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Abstract

Respiratory Syncytial Virus (RSV) is an actute respiratory infection
that infects millions of children and infants worldwide. Recent research
has shown promise for the development of a vaccine, with a range of
vaccine types now in clinical trials or preclinical development. We ex-
tend an existing mathematical model with seasonal transmission to
include vaccination. We model vaccination both as a continuous pro-
cess and as a discrete one, using impulsive differential equations. We
develop conditions for the stability of the disease-free equilibrium and
show that this equilibrium can be destabilised under certain (extreme)
conditions. Using impulsive differential equations and introducing a
new quantity, the impulsive reproduction number, we determine condi-
tions for the period and strength of vaccination that will control (but
not eradicate) RSV. In our model, the vaccine waning rate is a critical
parameter and more important than coverage for a long-term reduction
in RSV prevalence. We recommend that candidate vaccines be tested
for sufficient duration of protection before being released.

1 Introduction

Respiratory syncytial virus (RSV) is the main cause of acute lower respira-
tory infections in infants and young children [32], with almost all children
having been infected by two years of age [15, 39] and an estimated 0.5-2% of
infants requiring hospitalisation due to infection [27]. It has been estimated
that in 2005, 33.8 million new episodes of RSV occurred worldwide in chil-
dren younger than five years of age [32]. Symptoms of RSV range from those



of a cold to more severe afflictions such as bronchiolitis and pneumonia [15].
While mortality due to RSV infection in developed countries is low, occur-
ring in less than 0.1% of cases [46], few data have been published about
RSV morbidity and mortality in developing countries [48]. However, esti-
mates of the hospitalisation costs are substantial [19, 44, 51], making RSV
a significant economic and health care system burden.

Newborn infants are typically protected from RSV infection by maternal
antibodies until about six weeks of age [14], and the highest number of
observed RSV cases occur in children aged six weeks to six months [10, 41].
Immunity to RSV following an infection is short-lasting, and reinfection in
childhood is common [29]. Few studies have been undertaken to investigate
transmission of RSV among adults, but it is thought that infection can occur
throughout life [11, 21] and that, in older children and adults, RSV manifests
as a mild cold [15, 24]. RSV has been identified as a cause of mortality in
the elderly, with documented outbreaks in aged-care settings [18, 45]; one
such study found that up to 18% of pneumonia hospitalisation in adults
aged above 65 years may be due to RSV infection [17].

In temperate climates, RSV epidemics exhibit distinct and consistent
seasonal patterns. Most RSV infections occur during the cooler winter months,
whether wet or dry [48], and outbreaks typically last between two and five
months [16, 33]. In a number of temperate regions, a biennial pattern for
RSV cases has been identified [5, 30, 42]. In tropical climates, RSV is de-
tected throughout the year with less pronounced seasonal peaks, and the
onset of RSV is typically associated with the wet season [40, 48].

Immunoprophylaxis with the monoclonal antibody Palivizumab, while
not preventing the onset of infection, has proven effective in reducing the
severity of RSV-related symptoms [43]. However, prophylaxis is expensive
and generally only administered to high-risk children, with recommendations
varying across jurisdictions. There is currently no licensed vaccine to prevent
RSV infection, despite about 50 years of vaccine research. Recent research
has focused on the development of particle-based, subunit and vectored vac-
cines; several such vaccines are being evaluated in clinical trials, with other
vaccines in preclinical development [35, 37]. Live-attenuated vaccines are
also undergoing phase 1 trials [1]. With the possibility of an RSV vaccine
becoming available, mathematical models are powerful tools for assessing
the impacts of different vaccine characteristics.

Several compartment models for RSV transmission have been published
to date, most using Susceptible-Exposed-Infectious—Recovered (SEIR) dy-
namics and with a sine or cosine forcing term to account for seasonal varia-
tion in transmission [4, 12, 26, 31, 34, 47, 49]. Few studies have used dynamic



models to explore vaccination strategies for RSV, and these have generally
investigated RSV vaccination from a cost-effectiveness perspective [9, 28],
for example in the context of a newborn vaccination strategy in the Span-
ish region of Valencia [2, 3]. More recent studies conducted for the settings
of rural Kenya and the United States have focussed on the likely benefits
of vaccination for particular target groups [23, 36, 50]. To the best of our
knowledge, there are no theoretical models that examine the impact of an
RSV vaccine analytically.

Here, we examine the effects of a vaccine on the transmission of RSV
in a single age class. We consider several vaccination scenarios, including
differing levels of coverage, seasonal oscillations in the transmission rate
and a waning of the vaccine. We also compare continuous vaccination to
impulsive vaccination in order to determine conditions on the vaccination
strength and duration that will control the virus.

2 The nonimpulsive model

We first extend the SEIRS compartmental model for a single age cohort
described by Weber et al. [47] to include a vaccine strategy for RSV where a
fixed proportion of individuals entering the model are temporarily immune
to infection. This reflects the situation where pregnant women are vacci-
nated in the third trimester of pregnancy, generating protective maternal
antibodies that are transferred transplacentally to the unborn infant, con-
ferring protection from RSV infection in the first few months of life. We
assume that the leaving rate p is unchanged across all classes and that there
is no disease-specific death rate. We scale the entry and leaving rates so that
the population is constant.

Let S represent susceptible, I represent infected and R represent recov-
ered individuals, with V', I}y and Ry the corresponding compartments for
vaccinated individuals. The birth rate is u, with a proportion p vaccinated,
of whom e successfully mount an immune response; the death rate is equal
to the birth rate. The time-dependent transmissibility function is 5(t), with
recovery v and loss of immunity . The transmissibility of infected vacci-
nated individuals is described by Sy (), and the recovery and loss of immu-
nity rates for vaccinated individuals are vy and 7y respectively. Finally, the
waning of the vaccine protectiveness is given by w. Note that, although the
definition of vaccine duration is not fully elucidated for RSV, mathemati-
cally it is well-defined as the period spent in the vaccinated classes before
returning to the associated unvaccinated classes. This definition is based on
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Figure 1: The model.

an exponentially distributed time spent in the vaccination classes, and hence
the duration corresponds to % years.
The basic model with vaccination is then

S" = u(l —ep) — pS —Bt)SU + Iy) + YR+ wV

I'=Bt)ST + Iv) —vI — pl + wly

R =vI — uR —yR+wRy

V' =epu—pV — By(t)VI + Iy) + ywRy —wV
Iy =By(O)V(I + 1Iv) —vvly — ply — wly
Ry =vyly — pRy —wRy — wRy,

with B(t) = bo(1 + by cos(2mt + ¢)) and By (t) = (1 —a)B(t), for 0 < a < 1,
where « represents the efficacy of vaccination in preventing infection. (We
will relax the lower bound on « later in order to examine some theoretical
scenarios.) The model is illustrated in Figure 1.



3 Analysis

There is a disease-free equilibrium (DFE) that satisfies

,,,,, _ 1—
(5.1.R.V.Iy.R >=(( DIEw () PH ,0,0).
B+ w w+w
3.1 Constant transmission

If we assume transmission is constant, so that 5 and 5y are independent of
time, then the Jacobian is J = [J1]J2], where

—p—BI+1y)  —BS 7]
B+ Iv) BS —p—v 0
0 v et
S1= 0 BV 0
0 BvV 0
I 0 0 0 |
i w —BS 0 i
0 BS +w 0
Jy = 0 0 w
—pu=Bv+1Iv)—w =BV YW
Bv (I + Iy) vV —vy —p—w 0
L 0 vy —H =V — Wl

At the DFE, we have

[— —BS ¥ w —pS 0
0 BS—p—v 0 0 BS + w 0
J 10 v —u =y 0 0 w
DFE 0 *5V_V 0 B W B —BvV 1%
0 BvV 0 0 BvV —vy —p—w 0

| 0 0 0 0 vy —U =Yy —w

where

M= Bg—u—_u—)\ B BS 4+ w
By V BvV —vy —p—w— A"




The first four eigenvalues are always negative. The nontrivial part of
characteristic equation satisfies

N4+ A+e =0,
where

bi=-BS+p+v—3FvV+uw+putw
c=(BS—p—v)(BvV - —p—w) = BV (B +w)
=BS(—vy —p—w) = (u+)(BV —wy —p—w) — frVw.

We use the method of the constant term of the characteristic polynomial
to determine the reproduction number [20]. Rearranging ¢; = 0, we find

BS(wy + p+w) + BvV(u+v+w)

flo = (n+ )+ vy +w)

(This is equivalent to the value found using the next-generation method.)

If ¢4 = 0 and by > 0, then we have a bifurcation with the property that
the DFE is stable if Ry < 1 and unstable if Ry > 1

However, it is possible that when ¢; = 0, b; < 0. In this case, Ry is not
a threshold and the disease can persist if Ry < 1.

When ¢; = 0, we have

1 _
b - = B V(- 2.
101:0 Vv+,u+w[/8V (v VV)+(VV+M+&))}

Note that if v = vy, then by > 0. However, it is plausible that vaccinated
individuals infected with RSV will recover faster than unvaccinated individ-
uals. Thus vy > v. This raises the possibility that b; could be negative.

If vy — oo, then this is equivalent to vaccinated individuals recovering
instantaneously. In this case,

Viy—
hm b1: hm M‘FW‘FM‘FVV’
vy —00 vy —00 W+,U+VV

=00— BV >0

Hence if we define f(vy) = 2 Vv(”j‘fﬂﬂfj" +v)” then it is clear that

f(0) >0 and f(o0) > 0. So we would like to know whether f has a turning
point v, such that f(v{,) < 0.




Figure 2: Possible sketch of the form of f(ry) with a negative minimum
between two positive extremes.

We have
f/(V ) _ (W + u+ VV)[_BVV + 2(0‘) + u+ VV)] - [BVV(I/ — nuv) + (UJ + o+ VV)2]
o (w+p+rvy)?
W+ p+wm)? =By V]w+ p+ 1]

(w+p+wvy)?

It follows that v, = \/ ByV(w+ p+v) —w— . There are three require-
ments or this to be meaningful (Figure 2):

1 vy >v
2. f(vy) <0and
3. vy is a local minimum.

The first and second criteria determine whether such a vy, exists. To
prove the third, we can differentiate again:

(wHp+vy)?+ Bv(w+p+v)
(WA p+uvy)

> 0.

[ (wv) =

It follows that 17, is a local minimum whenever it exists.

4 The impulsive model

Previously, we assumed that vaccination occurred at birth and that a fixed
proportion of newborns were vaccinated. This is effectively continuous vac-
cination. However, vaccination may occur later and may be administered at



regular times (for example, in schools or daycare centres). We assume that
the effect of the vaccine is to reduce the susceptible population by a fixed
proportion 7. Such a model is described by a system of non-autonomous
impulsive differential equations [6, 7, 8, 25].

The impulsive model is given by

S =pu—puS—pBHt)SU+Iy) +~yR+wV t#ty
I'=Bt)SI + Iv) —vI — pul + wly t # ty,
R =vI — uR — YR+ wRy t #t,
Vi=—uV = Bv(t)V(I + Iv) + wRy —wV t# ty
I, = By V(I + Iv) — vy ly — uly — wly t # ty
Ry =vyly — pRy —wRy —wRy t# tg
AS =—rS t =t
AV =rS t = tg.

Here t;, are the vaccination times. They may be fixed or non-fixed, although
for our purposes we will consider them fixed.
4.1 Impulsive analysis

We set 5 to be constant for mathematical convenience, and therefore con-
sider the system in the absence of seasonal transmission. In order to analyse
the impulsive system, we need to solve the differential equations for finite
time. Since this is not possible in general, we develop several overestimates in
order to determine bounds for the long-term numbers of susceptible, infected
and vaccinated individuals, under several assumptions.

4.2 Susceptible individuals

First we consider the overestimate /+ Iy <1 (i.e., maximal infection). Then
we have

S" > u— S — BS.

Integrating and applying the “initial” condition S (t:) in the (k4 1)st cycle,
we have

—(B)(t=t1) g4y o —H (1 — B (t—t)
S(t) > e ks(t’“)+u+ﬂ<1 e D), for b <t <ty

S(tpy) = e TS 4 —E (1 e (D7)
(tpp1) =€ (k)—I—LH‘ﬂ( e )
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Applying the impulsive condition, we have

S(t) =0 =7r)S(ty)
St ) = (1 —r)e” PHATS(1) + #(1 —7) (1 _ e—(uw)T) ‘

+ 5
This is a recurrence relation in the form x,4+; = az, + b, which has equi-
librium Z = 72, and the equilibrium is stable if |a| < 1. In our case, we

have a = (1 — 7)e” A7 < 1, s0 the equilibrium is stable. It follows that
solutions converge to a stable impulsive periodic orbit with endpoints

L (1 — e*(wﬁ)f)
* 7 (1t B) (L= (1—r)ewio)

. w(l—r) (1 - e_(’”'ﬁ)T)
S = T A - (- e

These values correspond to the local maximum and minimum values for the
unvaccinated susceptibles after a long time. These values are well-defined,
since both the numerator and the denominator are always positive.
Note in particular that

lim S__ = 0.

f S
That is, if the period between vaccinations shrinks to zero, then the num-
ber of susceptibles would shrink to zero. (Note that this is a theoretical
result only, since the impulsive assumptions of long cycle times relative to
instantaneous approximation would break down [13].)

4.3 Vaccinated individuals

Second, we consider vaccination. Using the inequalities I + Iy < 1 and
Ry > 0, we have

V> —uV — BV —wV.

Integrating and applying the “initial” condition V' (¢]) in the (k+ 1)st cycle,
we have

v

V(t) > V() )e WOt for ) <t < tyyy
V(tipy) 2 V(e e,



Applying the impulsive condition, we have

V(i) = Vite) + rS(thi1)
T (1 — e*(“*ﬁ)f)
(n+8) (1= (1 —r)ewtim)
T (1 — e_(’”'ﬂ)T)
G AL (e )

V(i) = Vit +

> V(t’;)e—(uﬁ-ﬂ-I—w)T +

Since e~ (W+8+w)T < 1 this recurrence relation has a stable equilibrium and
hence solutions converge to the impulsive periodic orbit with endpoints

ru (1 _ e—(u+ﬂ)7> e~ (p+p+w)T

Voo = G B (1 = (1= e 07 (1 = v
i T (1 — e*(qu,B)T)
- (n+B) (1 -(1- T‘)e*(MJrﬁ)T) (1 _ e(u+5+w)7) :

4.4 Infected vaccinated individuals

Next we calculate the number of infected vaccinated individuals. Using the
overestimate I < 1, we can write

I'<pyV(1+Iv) —wyly — ply —wly
<BVE(A+Iy) —wyly — ply —wly

over a long period of time. Integrating and applying the initial condition
I1(0) = 0, we have

Iy = BV (1 _ e(BVVng_VV_.u‘_w)t) .
vy +u+w— By Vs

This converges if vy + pu +w — By Vi > 0. If this holds, then

Byru <1 — e—(u+6)7>

WY Gk B) (1= (L r)e ) (1 — el

Rearranging, we have

(+B) (1= (1 =1)e” A7) (my + - w) > Byrp (1 e 007
[—(u+B) (L =) vy + p+w) + Byrpl e WO > Byrp— (u+ ) vy + p+ w).
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This inequality has no solution unless

. (1 + B)(vv + p +w)

r<T= <1
Bvrp+ (p+B)(vv + p+w)
If r > 7, then I, converges to
+
lim Iy = v Vs =1y
t=o0 vt pt+w = Py Ve

We are interested in the size of this value of Ij°. We have

By (1 — e*(u+ﬂ)T)

Iy =

pA+B (1= (1 —r)eWtAr) (1 — e~ (Wthtw)T) (Vv Futw— Byru(1—e=(+B)T) ) .

(et B) (1= (1=r)e=GFA07)

To estimate the size of this value for frequent vaccinations, we use L’Hopital’s
rule to find

lim I{° = by
w0V (et B w) v+t w)
(I—a)bu

= <Ll—a<l1.
(n+B+w) (v +p+w)

It follows that Iy is small if the vaccine significantly reduces transmissibility
and is applied frequently.

4.5 Infected individuals

Finally, we examine the number of infected individuals under the assumption
that the number of infected vaccinated individuals is negligible (so Iy =~ 0).
We then have

I' ~ BST — vl — ul
<BS I —vl —pl
Bl’l’ (1 — 6_(H+6)7—)

S A (A= (A= retwamyl vl

It follows that, after sufficient time, the number of infections will be decreas-
ing if

Bu (1 _ 6—(u+5)7)
q= _
(b+B) (1= (1 —r)ewthr)

—v—pu<0.
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We thus define a new quantity, the impulsive reproduction number

B (1 - e—(u+ﬂ)7)
v+ ) (p+B) (1= (1 —r)ebrdr)’
which has the condition that the disease will be controlled if Ty < 1.
Solving the equation Ty = 1, we can define the maximal period as
1, Q=-rw+uptp)-Bu

n .
p+p (v+p)(p+B) - Bp
This is defined only if

Ty =

£ =

B

e Rk W

Differentiating, we have

1 — e HH+BT
Ty _ e ( ‘ ) {— (1 —(1- T)e’(“M)T) e’(’”B)T} <0.
o WA d)
It follows that Tj is decreasing as r increases, for r < r*.
Now let » = r* + € in order to determine what happens beyond r*. We
have

S U ) o) Bl = R

(v + p)(p+ )

Substituting into ¢ and taking a common denominator, we find that the
numerator of ¢ is

(v+ w2+ B)? [(1— e ¢ —1] <.

It follows that Ty < 1 whenever r > r*.

In summary, assuming the number of infected vaccinated individuals
is negligible, if r > r*, where r* is defined by (1), then the disease will be
controlled, whereas if r < 7*, then the disease will theoretically be controlled,
assuming the period between vaccinations satisfies 7 < 7.

5 Numerical simulations

5.1 The nonimpulsive model

From Weber et al. [47], we use the parameter values f = 50, p = 1/70
and v = 36, taking the transmission parameter to be constant. Figure 3

12



shows the results of transmission using disease parameters from Weber et
al. [47] and assumed vaccination parameters such that recovery was slightly

faster and transmission slightly less likely. Fhevaccimewasgiverr to50%of
theetigibte poputation; but-waned after 0.5 years, in line with the natural

immunity following recovery from RSV infection. The parameters used were
p=1/70;w =2;8 =50; By = 0.58;¢ = 0.9;p = 0.5;v = 36; vy = 1.2v;y =
1.8; and vy = 1.2v.

5
time (years)

Figure 3: Results from the basic model. There is an outbreak and the infec-
tious population oscillates, eventually approaching an endemic equilibrium.
A small proportion of individuals are (and remain) vaccinated, with a low-
level outbreak among vaccinated individuals. Note the log scale in the second
figure.

5.2 The impulsive model

Next, following Weber et al. [47], we examined the more realistic case when
the transmission rate oscillated and examined several possibilities for peri-
odic vaccine coverage via the impulse proportion r.

When there is no vaccine, the disease results in a maximum of about 7%
of the population infected. The parametersTused were p = 1/70;w = 2;by =
60;b1 = 0.16;¢ = 0.15; 8y = 0.58;¢ = 0.9;p = O;v = 36;vy = 1.2v;y =
1.8;vy = 1.2y and r = 0. See Figure 4.

A vaccine administered to half the population with 50% transmission
that waned after two years resulted in a maximum of about 2% of the pop-
ulation infected. See Figure 5. Data used were identical to Figure 4 except
that » = 0.5. In this case, the disease still oscillates but at substantially
reduced levels.

A vaccine given to three quarters of the population with 50% transmis-
sion that waned after two years resulted in theoretical eradication of the

13
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Figure 4: Without vaccination, the disease infects up to 7% of the population.
A. The total infected population, including vaccinated individuals. B. The

final size in each population.
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Figure 5: 50% coverage with a vaccine that cut transmissibility in half and
waned after two years resulted in a substantial reduction in the disease
compared to not—vaccimatimg. A. The total infected population, including
vaccinated individuals. B. The final size in each population.

disease. See Figure 6. The parameters used were identical to those in Fig-
ures 4 and 5 except that » = 0.75. In this case, there are eventually roughly
equal numbers of susceptible and vaccinated individuals, with no infected
individuals.

Note that, even in the unrealistic case of perfect coverage with a lifelong
vaccine (so that e =p =1 and p = w = =), the DFE still satisfies

G- _1
pt+w 2
_ 1
vt
pt+w 2

so the population without infection would eventually split into equal num-

14
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Figure 6: 75% coverage with a vaccine that cut transmissibility in half and
waned after two years resulted in theoretical eradication of the disease. A.
The total infected population, including vaccinated individuals. B. The final
size in each population.

bers of vaccinated and unvaccinated susceptible individuals. With infection
included and oscillating transmission, explicitly calculating the final size in
each compartment is not possible. However, we expect that high coverage
with a vaccine with faster waning would tend to a final size with approxi-
mately similar numbers; Figure 6 shows that this is indeed the case. Note
that these results confirm the theoretical predictions from Subsection 4.5.

Figure 7 illustrates the long-term population dynamics for the case of
50% vaccination coverage. The disease is not eradicated in this case but
oscillates at low levels.

Susceptible
e Vaccinated

Population
&
/

o o
=
-
P

1
0.2 IR AN Recovered Vaccinated recovered

] O L Vaccinated infected
oap  nfected’ N N K S AT

T A A A A SRR

10 15

time (years)

Figure 7: Population dynamics for 50% vaccination coverage that cuts trans-
missibility in half and wanes after two yars. Note the low-level oscillations
in both infected classes.

Finally, Figure 8 illustrates the destabilisation of the DFE when extreme
vaccination parameters are used. In this case, transmission due to vaccinated

15



individuals was extremely high, but recovery was fast, allowing for low-level
infection spikes to occur in the infected populations. The parameters used
were u = 1/70;w = 0.1; 8 = 0.03; By = 300;e = 1;p = 1;7 = {0, 1} (repre-
senting either no coverage or complete coverage); v = 36; vy = 177;y = 1.8;
and vy = 1.27.

0 005 01 o015 02 025 03 08 04 045 05 s [ R v v RV
time (years)

0.1 T T 0.7,

0.6
0.07| B 0.5F
goar
5

£ oaf
003 1 02k

0.1F

(] 5 10 15 s R v (XY RV
time (years)

Figure 8: Extreme parameters show that perfect vaccination can induce
unexpected infection spikes. A. With no vaccine (r = 0), the result is that
the infection clears and the entire population remains susceptible. (Note
that the timescale is given for only 0.5 years to show the decline but was
run for 15 years.) B. The final size of each compartment in the case of no
vaccine after 15 years. C. When an imperfect vaccine is given to the entire
popultion (r = 1), the result is a series of vaccine-induced spikes. Note that
the transmission rate is not oscillating in this example. D. The final size of
each compartment in the case of full vaccination after 15 years. Vaccination

thus destabilises the disease-freeequitibrium.

With no coverage, the infection clears. However, with complete coverage,
the infection rebounds from low levels, producing infection spikes in vacci-
nated individuals. Although the transmission rate is unrealistically high, this
nevertheless demonstrates that a stable DFE can be destabilised by a vac-
cine. Note that this phenomenon is not a backward bifurcation but rather a
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destabilisation of the equilibrium.

6 Discussion

Before a new vaccine is introduced, anticipated benefits and issues must be
assessed. Mathematical models can provide information about the population-
level effects of a vaccine and therefore assist in the decision-making process.
We have highlighted potential issues that may arise with vaccination for
RSV. In particular, we determine conditions under which a destabilisation
of the disease=freeequitibritmm is possible. This is not in the form of a back-
ward bifurcation, as is sometimes seen, but rather occurs when the vaccine
causes sufficiently fast recovery and transmission from infected vaccinated
individuals is extremely high. An infection-free population that is effectively
protected against RSV can nevertheless produce vaccination-induced spikes
of infection. These regular spikes occur even in the case when the transmis-
sion function is not oscillating. Although such a case is unlikely to occur
with the highly unrealistic parameters we chose, we have shown proof-of-
concept that it is possible and determined conditions on the recovery rate
due to vaccination that allow for the possibility.

We considered two forms of vaccination: single vaccination before infec-
tion (such as a maternal vacine) and periodic vaccination. Using impulsive
differential equations, we were able to formulate conditions on the period
and the strength of vaccination to allow for disease control. If the vaccine
reduces transmissibility and is applied frequently, then vaccinated infected
individuals can be reduced to low numbers.

We also defined a new quantity, the impulsive reproduction number 7.
This is a sufficient (but not necessary) condition, based on an overestimate
of the infected population, that ensures eradication if Ty < 1. If Ty < 1, then
the infected population is contracting within each impulsive cycle. Since the
infected population is then reduced at each impulse point, the result is the
eventual eradication of the infection. Note that we assumed constant trans-
mission for this derivation; however, numerical simulations were performed
using seasonal oscillations and demonstrated comparative results. In partic-
ular; if the strength of periodic vaccination r is sufficiently high, then the
disease will be controlled, assuming the vaccine is given with sufficiently
frequency. See Figure 6.

Our model has some limitations, which should be acknowledged. First,
we assumed that time to administer the vaccine was significantly shorter
than the time between vaccine administrations in order to justify the im-
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pulsive approximation. Such assumptions are reasonable in many cases [38],
although they can produce confounding effects in some situations [13]. The
extreme parameters that we used to illustrate the vaccination spikes oper-
ated under the assumption that the transmission rate for infected vaccinated
individuals was significantly higher than the transmission rate without vac-
cination. Since we extended the model introduced by Weber et al. [47], our
model inherited many of the assumptions from that model, such as mass-
action transmission, a constant birth rate and that the birth and death rates
were matched, resulting in a constant total population.

In our model, we considered RSV transmission dynamics for a single age
class, in order to allow for the model to be analytically tractable. Given that
we examined the broad population-level impacts in a large population, we
considered this a reasonable model simplification. Furthermore, it has been
shown that, for a similar compartmental RSV model, including multiple age
classes did not change the bifurcation structure of the model [22]. However,
different vaccine candidates for RSV are being developed for distinct key
age groups: infants, young children, pregnant women and the elderly [37].

In addition, our model simulated RSV dynamics for a general popula-
tion, rather than for a specific country or region, so we did not incorpo-
rate RSV-related hospitalisation rates for any specific region. However, for
publichealth organisations to make decisions about the cost-effectiveness of
a future RSV vaccine, the anticipated reduction in RSV-related hospitalisa-
tions will be a key factor. This means that future models that explore the
specific implications of vaccines for target age groups may need to incorpo-
rate additional age classes and region-specific RSV-related hospitalisation
data. The model we present here may be readily adapted to incorporate
additional age classes and local publicshealth data. With regards to the as-
sumption of maternal vaccination, it should be noted that there is some
(poorly understood) existing level of maternal antibodies that protect some
unknown proportion of infants from RSV in their first few months of life
(perhaps up to three month Q me other models have accounted for this
existing protectio Q

A vaccine that ets RSV infection has the potential to significantly
reduce the overall prevalence of the disease, but appropriate coverage is crit-
ical. For vaccines of short duration, a single pre-infecion vaccine is unlikely
to result in eradication. Long-term periodic vaccination can theoretically
control the disease, but coverage needs to be sufficiently high. Furthermore,
extreme vaccination parameters have the potential to induce unexpected
infected spikes as a result of the vaccine. While this is not likely to occur
in teatity; the possibility of such a surprising result demonstrates the care
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that should be taken to understand the potential long-term effects of new
vaccines before widespread introduction.
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