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1. Introduction

Impulsive differential equations provide an elegant way to describe systems that undergo very fast changes
in state [2,12,18]. These changes in state occur so quickly that they are idealized as discontinuities. Impulsive
differential equations have a host of applications, including pulse vaccinations [1,8], seasonal skipping in
recurrent epidemics [19], antiretroviral drug treatment [10,14] and birth pulses in animals [17].

Impulse extension equations have been put forward as a framework to study properties of impulsive
differential equations that remain invariant if one replaces the impulse effect by a continuous perturbation
[5]. Results on existence and uniqueness of solutions, as well as specialized results for linear periodic systems,
have been developed [6,7].

In the present article, two similar but ultimately different problems are solved. First, given a linear impul-
sive differential equation, we associate to it a family of impulse extension equations that is parameterized by
its step sequences. We then provide sufficient conditions under which the solutions of the impulse extension
equation converge to those of the impulsive differential equation, as the step sequence becomes small. These
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sufficient conditions are then tied to results relating to stability of the family of impulse extension equations,
relative to the impulsive differential equation that generate it.

Following this, the time-scale tolerance is introduced first for linear, periodic impulsive differential equa-
tions, and then in general linear systems. The time-scale tolerance behaves as a robust stability threshold;
if the norm of a given step sequence is smaller than the time-scale tolerance, than all impulse extensions
equations from a particular class will have the same stability classification as the associated impulsive dif-
ferential equation. From the point of view of applications, this indicates that if an impulsive differential
equation models some physical process, then the approximation by an impulsive differential equation is, in
a certain sense, “valid”, provided the perturbations that are idealized as impulses occur on a time-scale that
is smaller than the time-scale tolerance. Methods to compute the time-scale tolerance are proposed.

2. Background material on impulse extension equations
Throughout this paper, we will be interested in continuous systems that approximate the linear, finite-

dimensional impulsive differential equation,

dx
e A(t)x + g(t), t # T, W

AZZBk1’+hk, t = Tk,

as well as its associated homogeneous equation,

dx

— = At t

7 (t)z, # Th, @
Ax = Bk:L', t= Tk -

It is assumed that the sequence of impulse times, {71}, is monotone increasing and unbounded. Also, we
assume all functions appearing in the differential equations above are sufficiently regular to guarantee that
for any (to,zo) € R x R™, there is a unique solution x(t) defined on [ty, c0) satisfying z(¢y) = xo. For
example, it suffices to have all functions be bounded and measurable on compact sets.

We now comment on some notation related to sequences that will be relevant. If s = {s,, } is a real-valued
sequence, we define As,, = s,,11 — S5, to be the forward difference. Also, indexed families of sequences, such
as {s? : j € U} for some index set U, will always have their index appear in the exponent. As such, the
symbol s/, indicates the nth element of the sequence s/, for j € U.

The following definition of an impulse extension equation for (2) is a modified version of that appearing
in [7]; the present definition is for linear systems, and allows us to more concretely study the convergence
of their solutions, which is necessary to fulfill the objective of this article.

Definition 2.1. Consider the linear impulsive differential equation (1).

o A step sequence over T is sequence of positive real numbers a = {ax} such that a;, < A7y, for all k € Z.
We denote S; = Sj(a) = [1;,7 +a;) and S = S(a) = ez Sj- The set of all step sequences will be
denoted §*, and is defined by

S'={a:Z—-R;,0<ar <A1y}

o A sequence of functions ¢ = {(¢Z, oM},

oP R x RT — R™™, of :Rx RT — R™,



618 K.E.M. Church, R. Smith? / J. Math. Anal. Appl. 457 (2018) 616-644

is a family of impulse extensions for (1) if, for all k € Z and all @ € §*, the functions @i(~, ay) are locally
integrable and satisfy the equality

/ Gt ap)dt = &, 3)

Sk (a)

for & € {B,h}.

e Given a € §* and a family of impulse extensions, ¢, for the impulsive differential equation (1), the
impulse extension equation associated to (1) induced by (p,a) is the following differential equation with
piecewise-constant arguments:

4
Ccli_f = Atz + g(t) + @i (t, an)z(m) + Pk (t, ar), t € Si(a).

o To a homogeneous impulsive differential equation, (2), we can also consider the associated homogeneous
impulse extension induced by (p,a):

‘Cll_f — A(t)z, t ¢ S(a), 5
2_13 — Az + PPt an)a(n),  te Sela).

Definition 2.2. Let a family of impulse extensions, ¢ = {(¢5, )}, and a step sequence a € S* be given.
A function y : I — R™ defined on an interval I C R is a classical solution of the impulse extension equation
(4) induced by (¢, a) if y is continuous, the sets I N Sk (a) are either empty or contain 75, and y satisfies the
differential equation (4) almost everywhere on I. Given an initial condition

z(to) = wo, (6)

with (tg,x0) € R x R™, the function y(t) is a solution of the nitial-value problem (4)—(6) if, in addition,
y(to) = xo. The notation y(¢;tg, o, a) means that y(-) = y(-;to,x0,a) is a solution of the initial-value
problem (4)—(6) with impulse extension equation induced by (¢, a).

Definition 2.3. The predictable set of an impulse extension equation (4) for (1) induced by (g, a) is the set

t

P(p,a) =R\t € S(a): det | I+ / X1(s, 7)o (s,ax)ds | =0 (1)
max,, {7k <t}
where X (¢, s) is the Cauchy matrix for the linear homogeneous ordinary differential equation =’ = A(¢)x.

The following proposition is a restatement of Lemma 4.2 of [7].

Proposition 2.1. Consider an impulse extension equation for (1) induced by (p,a). For (to, xo) € RxR™, the
initial-value problem (4)—(6) with initial condition x(tg) = xo has a unique solution defined on the interval
I C R if and only if tg € P and for all I > 1, + ay, < to, the inclusion T + ax € P holds.

We will also make use of the following representation of matriz solutions of the homogeneous equation,

(5).
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Proposition 2.2. Suppose to € P. Then there exists a matriz-valued function, U(-;tg) : [I,00) — R™*™ with
l = max,, <, T satisfying U(to;to) = I, such that the unique solution of the initial-value problem x(to) = xo
of the homogeneous initial-value problem, (5)—(6), for any xo € R™, can be written as x(t) = U(t;tg)xo. In
particular, we have the formula

X(t;to), t,to € (TkﬂLak,Tk_Fﬂ

tO S (kal + ak7177-k?] ( )

k
Ultito) = ¢ X(t; 1)L (¢ 15) H X(mpq1; 7)) LD (Trg1;70) | X (k5 t0) Le [rrial, k< j
:jf VR 9

r 1

U(t; 7)U " (to; 1), to € (T, Tk + ax)

where X (t; s) is the Cauchy matriz of the homogeneous ordinary differential equation ' = A(t)xz, and the
function LF : (a,t) — L¥(t) is defined by

min{t,7x+ar}
=1+ [ X snebsa)s (9)

Tk

3. Convergence properties of impulse extension equations
3.1. Convergence of solutions with respect to the step sequence as a — 0

The main result of this section relates to the mode of convergence of solutions of the initial-value problem
(4)—(6) with respect to the step sequence a € S*.

Definition 3.1. Let a family ¢ of impulse extensions be given for an impulsive differential equation (1). Let
o = {01} be a sequence of positive real numbers, and let w = {(wZ, w)} be a sequence of pairs of functions
wi ¢ [Ty Tk+1] X [0, A7) — R with the property that wi is continuous and vanishing at (74, 0) and wi(, a) is
integrable on Si(a). We will say ¢ is (o, w)-exponentially requlated in the mean, or simply (o, w)-regulated,

if
HU Lo =0 (ultt ! 10
vt s) = S8 =0 | wiltys) oo (10)
for t € [, 7, + s) as s — 0.

Lemma 3.1. Let a homogeneous impulsive differential equation (5) be given. Let X (t;s) be the Cauchy
matriz of the homogeneous ordinary differential equation ©’' = A(t)x. Suppose for each k € Z, the inequality
|| X (t; 7%)|| < e7*F=7%) holds for some oy >0, for t € [, Tks1]. If ¢ is a (o, w)-requlated family of impulse
extensions for (5), then L¥ — I + By, pointwise as a — 0. If N C [, Tre1] and no decreasing sequence in
N converges to Ty, then the convergence is uniform on N.

Proof. First, notice that we can write L¥ as

mi (1) my (1)
1
LE(t;m) =T+ - X~ Y(s;7p)ds | By, + / X Ys; )€l (t, ap)ds,
k
Tk Tk

where ¢ (t,ax) = ¢f (t,ax) — .= By, and mf(t) = min{t, 7 + ax}. Now let aj, < ¢ — 7, so we have m{.(t) =
71 + ar. We then have
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| | T
— / X Ys;mp)ds — I = — / [Xfl(s;Tk) — Xﬁl(Tk;Tk)} ds,
a ag

Tk Tk

which clearly converges to zero as a — 0, due to the continuity of X ~!(s;7). Therefore we conclude that

k
Tk t+a,

1
— / X Y(s,m)ds — I.
ag

Tk
As for the other integral, we have X (s, 7;) = X (74, s). We thus have the estimation

Tk t+ak Tk+ak

B C
X Y(s,7)eB (s, ar)ds|| < / eak(m—S)Mdes < ZEwB (-, an)ll,
ekt — ] ok
Tk Tk

for some constant Cy > 0, where we used the asymptotic condition (10) and Gronwall’s inequality, and the
norm on wp (-, ay) is the uniform norm over the interval [y, 71, + ax]. Since w? is continuous and vanishing
at (7x,0), we have that [|wZ(-,ax)|| — 0 as ay — 0. Therefore we conclude that the integral term converges
to zero. It now follows that L¥ — I + By, pointwise as a — 0.

The convergence is generally nonuniform because mj, does not converge uniformly. However, the conver-
gence can be made uniform on N C [1g, Tg41] if 7% is not an accumulation point of N. Take aj < inf N — 7y
so that we have ¢t > 7, + aj, for all ¢ € N, from which it follows that m§(¢) = 7 + ax on N. Then, the
previous argument proceeds without modification, but the result holds uniformly for t € N. O

Theorem 3.1. For any linear impulsive differential equation (4), there exists a sequence of positive real
numbers, o = {o}, such that, for any (o, w)-regulated family ¢ of impulse extensions for (4), the following
are true.

o For all ty € R, there exists 0 = d(to) > 0, such that, for a € S* with ||allcc < ¢ and all zop € R,
the impulse extension equation (4) induced by (@, a) possesses a unique classical solution, x(t;tg, xo,a),
satisfying the initial condition x(to;to, xo,a) = xo, and is defined for t > ty.

o Ifdet(I+ By) #0 for all k € Z, the function t — x(t; to, xo,a) converges pointwise to x(t;to, xo,0), the
solution of the initial-value problem x(to) = xq for the impulsive differential equation, (1), as ||a||ec — 0.

e If N C R is bounded and no strictly decreasing sequence in N has an impulse time Ty, as its limit, the
above convergence is uniform fort € N as a — 0.

In particular, it suffices to choose

o = / 1 A(s)]|ds. (11)

Tk

Proof. Throughout this proof, ¢ is a fixed family of impulse extensions for (1). The first part of the Theorem
is trivial. If ¢y = 74 for some k, then we have 7, € P by definition. Conversely, if g # 7 but ty € (&, Tk+1),
then as long as we have a < tg — 7 = 6(to), we will have ¢y € P. It now follows by Proposition 2.1 that,
for all zy € R™, there exists a unique solution of the initial-value problem z(tq) = zy defined on [tg, c0)
provided ||allco < d(to). We will now denote the solution x(t;to, zo,a) to indicate the dependence on xg
and a.
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Next, we will prove that z(t;to, zo,a) — x(t;to, zo,0) uniformly for ¢t € N as ||a||c — 0, as stated in
the third conclusion of the theorem. We will only prove the uniform convergence result, since this implies
pointwise convergence everywhere.

Before we begin, note that it suffices to prove the convergence on a compact, connected interval. Indeed,
if the convergence is uniform on the closure of IV, then it is uniform on NV itself, and if N is disconnected,
then it must be contained in a finite union of connected intervals Ny, ..., N,, each of which has the property
of not having any impulse time as a left limit point. Therefore we will assume that the compact set IV is a
closed interval contained in (7%, 7x41] for some k.

Let ||al|oc < d(to). Since ty € P, it follows by Proposition 4.2 of Church and Smith? [7] that we can write

x(t;tg, o, a) = U(t; to, a)xg + 2P (¢, a),

where U (¢; tg, a) is the matrix solution for homogeneous equation of (4) with step sequence a and satisfying
U(to;to,a) = I, and 2P(t, a) is the solution of the inhomogeneous equation (4) with step sequence a and
satisfying xP(tg,a) = 0. By this decomposition, it suffices to prove the uniform convergence of U(¢;to, a)
and 2P (t,a).

We first demonstrate the convergence of U(t; tg, a). For simplicity, we will assume ¢, = 79; the other cases
follow by similar reasoning, due to the representation provided by equation (8). For t € N C (74, Tk+1], we
have

0
Ul(t,a) = X (t; ) LE(t; 1) H X (Trgr; 7o) LE( + ar; 70),
r=k—1

where we have suppressed the dependence on ty. Therefore,

Ut a) = U 0)]| < sup || X (& 7)]] -
teN

<L(t;7‘k) H X(Tr+1;Tr)L(Tr+a;TT)> (12)

r=k—1

0
— (I +By) ( H X(Tr+1;Tr)(I+Br)> H (13)

r=k—1

It suffices to prove that if @ — 0, then LY (¢;7;) — I 4+ By uniformly on N for each j =0,..., k.

By the generalized Gronwall’s inequality, we will have || X (¢;7;)|| < e“*(#=7) for ¢ € [r;,7;j41], where the
constants o; are given by (11). Define o = {0} }. If ¢ is (o, w)-regulated, Lemma 3.1 guarantees the required
convergence of L (t;7;) for j = 0,...,k, uniformly on N. We conclude that U(t,a) — U(t,0) uniformly
on N.

Next we show that aP(t,a) converges to the associated impulsive solution. This will be established by
induction on the structure of the compact set V.

Similarly to before, we will assume that tg € [r9, 71]. Other cases follow by similar reasoning. Suppose
N =[N~,N*] C (70, 71]). Then we have

2P (t,a) = X (t; 719 /X $;70)(g(s) +<pg(s,a0) . ﬂ[SQ(G)DdS+X(t;TO)L2<t;TO)fL'g<G/),

zh(a) = —Lgol(to; To)/Xil(S;To) (g(s) + gag(s,a) . ]l[SO(a)]) ds
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2P (t,0) = X (t;70) | (I + Bo)x(0) + ho + /X_l(s; 70)g9(s)ds + ho | ,

70

x5(0) = —(I 4+ Bo)~* |ho + /Xil(S;To)g(S)dS

To

Note that if ||a||s is sufficiently small, then zf(a) is well-defined, since (L%)~1(to;79) — (I + Bo)~! by
Lemma 3.1.

We then have the equality

To+ao
P (t,a) — zP(t,0) = X (t;79) / X_l(S;To) (@g(s,ao) — X (s; To)aih()) ds
0

70

+ X (t;70) (LY(t; 7o)ah (a) — (I + Bo)ah(0)] ,

(14)

provided ag < N~ — 79. A routine application of the triangle inequality, the (o, w)-regularity condition and
an argument similar to the proof of Lemma 3.1 can be used to show the integral converges to zero as a — 0.
We also have L2(¢;79) — I + By uniformly, so it suffices to prove the convergence x5 (a) — z5(0).

We perform a similar bracketing, obtaining the formula

to
(o) = Th(0) = — (.t ) — T~ Bo) [ X (ssm)gls)is
TO
To+ao
—1 0 h 1
- [ x s [La(t0370)¢0(57@)—(I+Bo)a—0h0 s,

70
which is valid if ag < tg — 79. The first term clearly converges to zero, and the second one can be shown
to converge to zero as well, in the same way as the convergence of the integral in equation (14). Therefore
zh(a) = z§(0) as a — 0, from which we obtain the convergence zf(¢,a) — z§(¢,0) as a — 0, uniformly for
te N.
For the induction hypothesis, assume that if N C= [N, NT| C (71, 7] for some k > 0, then 2?(¢,a) —
xP(t,0) as a — 0, uniformly for ¢ € N. Without loss of generality, we may assume that N* = 7;. Now if
M =[M~,M"] C (7k, Tk+1], we have

2P (t,a) = X(t; Tk)LZ(t; T ) 2P (T, @)

- X(tm) / XY s:m) (g(s) + 0l (s, ax) - 1[S(@)])ds,

WP (1,0) = X(E70) | (1 + By)a? (me,0) + g + /X‘l(s; 72)9(s)ds + b

Tk
Subtracting, we obtain
zP(t,a) — xP(t,0) = X (t; %) [L’;(t;Tk)xp(Tk, ar) — [E+ Bk]a:p(Tk,O)]
Ttk

_ 1
+X(t;’7’k) / X 1(S;Tk)g02(s,ak)—a—khk y

Tk
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provided ay, < M~ —7g. By the induction hypothesis, we have a? (7, a) — xP (7%, 0). By Lemma 3.1, we know
that L¥(t;7,) — I + By. By the same reasoning as earlier, the integral term converges to zero. Therefore
we conclude that zP(t,a) — zP(t,0) on M. Hence, for any k, if N is a closed interval in (7x, k1], 2P(¢, a)
converges uniformly to xP(¢,0) as a — 0. This proves the theorem. 0O

Corollary 3.1.1. The conclusions of Theorem 3.1 hold if, for all k € Z and £ € {B,h}, the relation

1
#i(ts) = & =0(1) (15)
holds for t € [Ty, Tk + s) as s — 0.

Proof. The choice of functions wi (t,s) = e?*% — 1 satisfies the conditions of the theorem and provides the
asymptotic relation (15). O

Corollary 3.1.2. If ¢ is (o, w)-requlated family of impulse extensions for (4) and

Th+1
o =mas / 1A(s)]|ds (16)
Tk

is finite, the conclusions of Theorem 3.1 hold.
8.2. Convergence of Floquet multipliers for periodic systems with respect to the step sequence as a — 0

In this section, we assume that det(I+ By) # 0 for all k = 0, ..., c¢—1. One consequence of Corollary 3.1.2
is that the Floquet multipliers of a periodic, homogeneous impulse extension equation, (5), induced by an
(p,a), will converge to those of the associated periodic, homogeneous impulsive differential equation, as
a — 0. To make this precise, we first state two definitions.

Definition 3.2. The impulsive differential equation (1) is periodic with period T and cycle number ¢, or
(T, c)-periodic, if A and f are T-periodic and ¢ is the smallest natural number such that the shift identities
Thte =Tk + 1Ty Brye = B and hyq. = hy, for all k € Z.

Definition 3.3. An step sequence a € S* is c-periodic if ax4. = ay for all k € Z. Denote by S the set of
c-periodic step sequences. If equation (4) is (T, ¢)-periodic, a family of impulse extensions, ¢, is (T, ¢)-periodic
if the shift property

@g—&-c(t + T7 (l) = @? (ta CL)
holds for a € S, t € Si(a) and integers k, where a € {B, h}.

The above definitions imply that a finite set of functions ¢ = {(pZ, p})} suffices to define a (T, ¢)-periodic
family of impulse extensions. As such, we will say that a (7T, ¢)-periodic family ¢ is (o, w)-regulated if the
asymptotic condition (10) is satisfied for indices k = 0,...,c — 1. As such, the sequences o and w can also
be taken as c-element indexed sets.

Analogous definitions to the above hold for homogeneous equations, for which the following corollary is
relevant.

Corollary 3.1.3. Let the homogeneous impulsive equation (2) be (T, c)-periodic. Let ¢ be a (T, c)-periodic
family of impulse extensions for (5), and suppose ¢ is exponentially (o, w)-regulated in the mean with
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Tk+1
o=o4=  max / [|A(s)||ds. (17)
Tk

If M, denotes the monodromy matriz of the impulse extension equation induced by (¢, a), and My is the
monodromy matriz of the impulsive differential equation (2), we have M, — My as a — 0, where the
convergence is for a € S¥. The result remains valid if o = op = ||A]|, where X(t) = ®(t)e*t=70) js the
Flogquet factorization of the homogeneous equation z' = A(t)z, and ® is T-periodic and satisfies ®(1p) = 1.

Proof. By theorem from Church and Smith? [7], we have M, = U(T + 79; 70, a), where U(t; 79, a) is the
matrix solution of (5) with impulse extension family ¢ and step sequence a € S, satistying U (9; 70,a) = I.
By Corollary 3.1.2, we have U (T +79; 70, a) = U(T +70;70,0) = My as a — 0. If 0 = ||A[|, we note that one
has || X (t)|| < Ke?*=70), where K = SUPy¢[ry, ro+1]» from which the result follows due to Lemma 3.1. O

Since the stability or instability of a homogeneous impulse extension equation can be inferred from
the spectrum of the monodromy matrix [7], the above corollary implies that, unless the spectrum of My
intersects the unit circle, the stability of the impulsive differential equation will match that of the impulse
extension equation induced by (¢, a) provided [|a|| is small enough. We have the following corollary whose
proof we omit, since it follows from the above results and Corollary 5.2 of [7].

Corollary 3.1.4. Let My denote the monodromy matriz of the (T, ¢)-periodic impulsive equation (2). If o(My)
does not intersect the unit circle, (2) is asymptotically stable if and only if, for all (o, w)-requlated families
of impulse extensions, ¢, with o as defined in Corollary 3.1.3, there exists 6 > 0 such that, for all||a]| < 0,
the impulse extension equation for (2) induced by (¢, a) is stable for any tg € P(p,a).

8.3. Asymptotic stability of aperiodic systems as the step sequence becomes small, a — 0

If the impulsive linear system (2) is stable but not asymptotically stable, then nothing can in general
be said for the stability for associated impulse extension equations, (5). In fact, asymptotic stability is, in
general, required, as the example from Section 3.4.2 illustrates.

The main result of this section rests on the following two lemmas.

Lemma 3.2. Let x,, be a bounded real-valued sequence, and suppose the inequality Hf:ti x; < C holds for all
n € N and some C € (0,1) and a monotone sequence of natural numbers, s,, with bounded finite difference,
for which s,, — co. Then there exists € > 0 such that, for all € € [0,€*), the inequality

Sn41

[[@+eo<co

holds for some C(e€) € (0,1), for alln € N.

Proof. Let As,, < D be the upper bound on the finite difference and |z,| < X be an upper bound. For
each n € N and € € (0,1), we have

Sn+1 Sn+1 Asp As 4 . Sn+1
H (zi+€) < H z; + Z < Z.”)HXAS"“_Z + H €

1=8n 1=8pn =1 1=S8n
Asy,
<C+ E €' max{X, 1}P+1 4 PF1
=1
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D
<C+ ZiemaX{X, 1P 4 (D 4 1)e
i=1

=C+He <%D(D + 1) max{X,1}P* + D + 1) = CO(e).

Define €* by

1-C
D(D+ 1)max{X,1}P+1 + D+ 1’

e
61—1
2

It follows that if 0 < e < min{e}, 1} = €*, then C(e) < 1. O
Lemma 3.3. Let x,, be a bounded, nonnegative, real-valued sequence, and suppose the inequality fi::b x; < C

holds for all n € N and some C € (0,1) and a monotone sequence of natural numbers, s,, with bounded
finite difference, for which s, — co. The infinite product H;’io x; diverges to zero.

Proof. Without loss of generality, suppose sqg = 0. As before, let As,, < D be the upper bound on the finite
difference and |z,| < X be an upper bound. By construction, there exists a subsequence of s,, denoted
Sn,,, and a bounded sequence d,,, € {0,1,..., D — 1} such that m = s, + d,, for all m € N.

Consider |py,| = [Ti~, |z;|, the modulus of the sequence of partial products. By the above representation
of m € N, we have

Snm Sny Tdm m Sj41 S +dm
lpm| = (H $i|> H |zi| < H H || H || < C™ ! max{1, X}7.

1=8n,, +1 J=01=s; 1=Sn,, +1
Since C' < 1 and X and D are finite, we have [p™| — 0asm — co. O

Theorem 3.2. Let a homogeneous impulsive system (2) be given. Define the sequences C; and D; by

Ti+l S
D, = / 1A exp | —2 / A ldr | ds, (18)

E; = ||I + Bil|(1+ /(A7) D;). (19)
Consider the following conditions.

Al: The sequences D; and E; are bounded.
A2: There exists a strictly increasing sequence of natural numbers s, with a bounded forward difference and
a real number C' € (0,1) such that, for all n € N,

f[ E, <C. (20)

1=8n

A3: ¢ ={pk} is a family of impulse extensions for (2) that satisfies the asymptotic relations

on Si(a) as ||al|ec — 0, for some function G satisfying G(a) — 0 as ||a||cc — 0.

S

Sglta [ hlsm)+ gh(sm)ds < Gla),  h(sm) = [ g(raydr
Sk (a) Tk

1
t - -B
oi(t, a) B

(21)
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Ad: ¢ is (o,w)-regulated in the mean with || X~ (t;74)|| < e7*E=7) for t € [, Tps1] for all k € Z, where
X (t; 8) is the Cauchy matriz of v’ = A(t)x.
A5: det(I + By) #0 for all k € Z.

System (2) is asymptotically stable, and, for all ty € R, there exists § > 0 such that if ||al|cc < 0, the impulse
extension equation for (2) induced by (¢, a) is asymptotically stable at to and uniformly attracting on R. If
N C P(yp,a) is bounded and separated from R\ P(p,a), the previous result holds with uniform asymptotic
stability on N.

Proof. Let ¢ty € R. If ||al| is sufficiently small, then, by definition, to € P(p,a), so we may assume ty €
P(p,a). We prove only the case of tg = 7p; the other cases follow by similar reasoning (with the only
significantly different cases being if ¢o is in the interior of Si(a) for some k; in this instance, formula (8)
is useful). By the generalized Gronwall’s inequality, any matrix solution, U(t), of (5), for which U(tg) = I,
satisfies the inequality

U] < [U()] Gk(t)+/Gk(S)|A(S)Iexp —/IA(T)\dT ds |,

for ¢ € [T, Tk+1], where | - | denotes the standard Euclidean norm (or induced matrix norm),

t

Gult) = |1+ / or(s,a)ds|,

Tk

and we identifying ¢y with ¢y, - 1[Sk(a)]. By a simple inductive argument, we can see that, for ¢t € [, Ti41],

E—1 Tit1 s

U] < 0@IEO ] | Gimn + [ Ga@ia@len | - [amr|as), @)
=0 i i

Fi(¢) sz(t)—&-/Gk(s)\A(sﬂexp —/|A(7")|dr ds. (23)

An overestimate of Fi(t) can be obtained via the Cauchy—Schwarz inequality, together with maximizing the
integral by taking the upper limit as 74;. We have

1
Tk+1 2 Tk+1 2

Fi(t) < 1+ Byl + /Gk(s)st /\A(s)|2exp —2/\A(r)|dr ds
Tk Tk Tk

Dy,

Since Gi(t) is constant and equal to |I + Bg| on [Tgta,, Tk+1], We can write

Fi(t) <14 |Bg| + / Gr(s)%ds + (Amp — ax)|I + By|? D . (24)

Sk (a)

We now have the task of estimating the integral of G2 on Si(a). Using the asymptotic condition (21), we
can write
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1
lor(t)] < —|Bk| +g(t,a)
ar,

provided ||a|| is sufficiently small, for all t € Si(a). It follows that

S

1
Gty <1+ [ (il + ot ds (25)
k
Tk
Substituting the upper bound from (25) into (24), we obtain
1
S S 2 2
1 1 1
Fi.(t) <14 |Bk| + / 1 +2/ a—|Bk| +g(r,a)dr + /a—\Bk| +g(r,a)dr| ds| D}
k k
Sk (a) Tk Tk
1
S S 2 2
1 1
<1+ |Bg|+ | ak <1 + |B| + 2ak|Bk|2> +2 / /g(r7 a)drds + / /g(r, a)dr| ds| D}
Sk(a) Tk Sk(a) Tk

1
2

1 1
<1+l + (o (14 1Bl + jadlBi?) +26@) D},

where in the last line we used the integral estimate in (21). By hypothesis, the sequence Dy, is bounded.
Boundedness of Dy, implies the boundedness of By, from which we conclude

1
1 2
F.(t)<1+ B+ <ak (1 + B+ §akBQ> + 2G(a)) D3

Ry

for positive constants B and D with D; < D. It follows that Ry — 0 as ||a||cc — 0, uniformly for all k¥ € N.
By similar arguments, one can show that the bound

k—1
U] < U)|(1+ B+ Ry) [[ 1+ Bl +/(&r —a)ll + B + &2 - /D,
i=0

holds for all ¢ € 7y, Tk41]. Since Ry — 0 uniformly for k € N as ||a||c — 0 and the D; are independent of
a, we can, for any € > 0 small, ensure that

k—1
U] < [U)(L+B+e) [[ H+Bil + V(A7 =)l + Bil> +¢2- v/ D;
=0

k—1
< U)X+ B+e) [[ 11 +Bi|(1+ (A7 — €)D;) + eVD
=0

k—1
< |U(r)|(1+ B+ ) [] [Bi + VD],

=0

for t € |1, Tk+1] and all k € N, by choosing ||a||o, small enough. By Lemma 3.2 and Lemma 3.3, there exists
some €* > 0 such that the infinite product [[;,[E; + VD] diverges to zero, provided e < €*. It follows
that |U(¢)] — 0 when e < €*, which is equivalent to ||a||c < d for some sufficiently small §. This also proves
uniform attractivity on R; if 2:(¢) and y(¢) are two solutions defined for ¢ > ¢*, then there exists 7, > t*,
and, by Lemma 4.3 of [7], we have x(t) — y(t) = U(t)U () (z(7%) — y(71)) — 0 as t — oc.
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Next, since any solution of the initial-value problem x(¢1) = z; for (5) with ¢; € N can be written as
z(t) = U(t)U~L(t1)z1, we obtain |z(t)| < n for all ¢ > ¢, provided

n
SUP>g, |U(8)] - [U ()]

|LE1| <

where the supremum exists due to boundedness of U for t > to, and U ~!(t1) exists since t; € N C P(ip, a);
see [7] for more details. Therefore (5) is stable and attracting on N, and so is asymptotically stable.

If N is bounded and separated from R \ P, it follows that ¢ = inf N € P(p,a) and that K =
sup,en [U71(t)] and J = sup,c y |U(t)| are finite (provided ||a|| is chosen sufficiently small so as to guarantee
that 7, + ar € P(p,a) for all 7, € N; this can always be done because N is bounded and assumptions
A4-A5 hold; see Lemma 3.1 and Theorem 4.2 of [7]). Then, replacing the bound above with |z1| < n/(JK),
we obtain uniform stability on N. O

3.4. Counterexamples

Some of the previously stated results are, in a certain sense, optimal, while others are not. The coun-
terexamples of this section appear in, or are inspired by counterexamples appearing in [5].

3.4.1. (o,w)-reqularity is sufficient, but not necessary, for pointwise convergence of solutions
Consider the simple scalar equation

2 =z, t£k
(26)
Ax = —0.75z, t=k,

with k € Z. This equation is periodic with period one, and its Floquet multiplier is p; = ie, which is less
than one. Consequently, the trivial solution is asymptotically stable.
Consider now a periodic impulse extension for (26):

7 =z, té¢[k,k+a)
(27)
¥ =x+pt—ka), telkk+a),

where (-, a) : [0,1] — R (note that we are taking advantage of the fact that, since (26) is periodic with

order one, a family of impulse extensions is generated by a single function). For fixed a € (0, 1), the solution
of (27) satisfying the initial condition x(0;a) = 1 is given by

t
z(tia) =€ [ 1+ /e_sgo(s,a) - 1[0, a]ds
0
for ¢t € [0,1]. In particular, if we set g(s,a) = ¢(s,a) — £(—0.75), we have the equality

[ =075 [
z(l;a) =e 1+/e_t dt—&—/e_tg(ua)ds
a

0 0

In the limit, as a — 0%, we have
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a

1
z(l;a) — zeJr (3(11_13)1+ /eftg(t,a)dt.
0

R(g)

Therefore pointwise convergence of the solution at time ¢ = 1 is equivalent to having R(g) = 0.

If g(t,a) = 1< sin (2£), then computing R(g) gives

er—1 a

i 1 ot 2rae—a
ERT —t . 4nt _ anae
Rig) = alg})l+ T < a ) dt alggr a? + 4m? 0
0

For the linear impulsive equation (26), we have o4 = 1, but this particular choice of g(¢,a) does not
satisfy the (1, w)-regularity requirement, (10), for any w. Consequently, ¢(t,a) = %(—0.75) + g(t,a) is not
(1, w)-regulated, but we do see pointwise convergence of the solutions at ¢ = 1. One can clearly see that this
holds for all ¢ € [0, 1]; by periodicity, we obtain pointwise convergence everywhere.

On the other hand, if we choose

2 4+ 42 27t
ht. a) Lﬂ)sm (i)
a

B 2ra(l —e~@

we obtain R(h) = 1, and h also fails the (1, w)-regularity requirement. It is also far more singular at a =0
than is g, but this is beside the point. The usefulness of the definition of (o, w)-regularity stems from the fact
that it does require a specific functional form of the solution of any given differential equation to be applied,
as illustrated by Corollary 3.1.1. In this counterexample, the general solution of the homogeneous equation
is expressible analytically, allowing for a more precise condition on pointwise convergence of solutions to be
stated.

8.4.2. Corollary 3.1.4 does not hold in the presence of unit Floquet multipliers of the impulsive system
Consider the “trivially impulsive” impulsive differential equation

dr

— = rsin(t), t # 2k,

= rsin(t) + o)
Ar =0, t = 2km.

The Floquet multiplier of this system is o = 1, and the fundamental matrix solution at to = 0 is X (t) =
exp(1 — cos(t)). Therefore Corollary 3.1.4 cannot be applied. Let us consider for any a € (0, 27), the family

2t 1
©(t,a) = a’sin (i) sin (—>
a a

with ¢(t,0) = 0 for all t. We have ||p(t,a)|| < a®, so that ¢ is (o, w)-regulated for any o and w = (e7%—1)a®.

Note that
r . 2t
cla) = /eCOb(t) sin <l> dt >0
a
0

for @ < 7. We argue this as follows. For 0 < t < , the function e“*5(!) is positive and decreasing. Conse-
quently, e5(t) > ¢e0s(a/2) for t < /2 and () < ¢°5(e/2) for t > a/2. Then

of impulse extensions
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a/2 a
27t 27t
c(a) = / ecos() gin <W> dt + / ecos() gip <7T> dt
a a
0 a/2
a/2 a
. 2t ) 2mt
> / min e sin <7T> dt + max €M) gin (W) dt
[0,a/2] a la/2,a] a
0 a/2
a/2 a
. 2t . 27t
= / e<03(a/2) gin (l) dt + / e<03(a/2) gin (l> dt = 0.
a a
0 a/2

Therefore c¢(a) > 0 for 0 < a < 7. By [7], the Floquet multiplier of the impulse extension equation induced

by (¢, a) is
f 2 1
po = X (2m) |1+ /ecos(t)_1a5 sin <ﬂ> sin <—) dt
a a
0

— 1+ dPsin <1> c(a).

(& a

The function a® sin (%) has roots at (27n)~! for all integers n, with derivative oscillating in sign from
1
a
(0,€). We conclude that pu, oscillates between greater than and less than 1 on any interval (0,¢) for e < T;

positive to negative. Consequently, a® sin( ) assumes both positive and negative values on any interval
see Fig. 1 for a visualization. In terms of stability, this means that the stability of the impulsive system
(28) cannot be used to predict the stability of an associated impulse extension equation, even if the step
sequence is very small.

In conclusion, the conditions of Corollary 3.1.4 on the spectrum of the impulsive monodromy matrix, My,
cannot in general be weakened without assuming additional hypotheses on the family of impulse extensions.

4. The time-scale tolerance for linear, homogeneous impulsive differential equations

In this section, we introduce the notion of uniformly (o, w)-regulated families of impulse extensions and the
time-scale tolerance for linear, homogeneous impulsive differential equations. The definitions differ between
periodic and aperiodic systems. Generally, we must deal with stable and unstable systems separately. First
we have a basic definition. In this section, the word periodic will be synonymous with (7', ¢)-periodic.

Definition 4.1. Consider a homogeneous impulsive differential equation, (2). Let o = {0} be a sequence
(c-element, if (2) is periodic) of positive real numbers and w = {wg} be a sequence (c-element, if (2) is
periodic) of functions wy, : [Tk, Tk41] X S¥ — R that are continuous and vanishing at (4,0) and such that
wg(+, a) is integrable on S (a). A family of periodic impulse extensions, ¢ = {¢k }, is uniformly exponentially
(0, w)-regulated in the mean or simply uniformly (o, w)-regulated if the inequality

is satisfied for all s € S(a) and k € Z (or k = 0,...,c— 1, of (2) is periodic). A pair (o, w) that satisfies
the above criteria will be referred to as a uniform exponential regulator. If ¢ is uniformly (o, w)-regulated,

1 wg (s, a)
Bl < B
cpk(s,a) ag kH — e%kak — ]

(29)

we will write ¢ € (o, w).
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Fig. 1. Plots of p, — 1 on four different scales, with 4000 sample points. Notice that oscillation is more easily seen on the smaller
scales. This is to be expected, as the amplitude is essentially a fifth-order polynomial in a. This figure appears in [5].

Section 4.1 introduces the time-scale tolerance for asymptotically stable periodic systems, proving several
elementary properties and providing an algorithm for its calculation. Section 4.2 extends the definition to
unstable periodic systems. Finally, in Section 4.3, the definition of time-scale tolerance is extended to
general, aperiodic systems via exponential dichotomies. For a physical interpretation of uniform exponential
regulators, see Section 4.4.

4.1. The time-scale tolerance for periodic, asymptotically stable systems

We treat periodic, asymptotically stable homogeneous systems (2) first.

Definition 4.2. If R = (0, w) is a uniform exponential regulator and a € S¥, the (R, a)-pseudospectral radius
of (2), denoted p(R, a), is defined by

p(R,a) = sup pM(p, a), (30)
YER

where M(p,a) is the monodromy matrix of the impulse extension equation for (2) induced by (p, a).

Definition 4.3. Suppose (2) is asymptotically stable. Let R be a uniform exponential regulator. If ¢ is a
periodic family of impulse extensions for (1), let M(y,a) denote the monodromy matrix of the impulse
extension equation for (1) induced by (¢, a). The R-stable set, denoted Es(R), is defined as follows.

Es(R)={a €S} :p(R,a) <1}. (31)
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The R-time-scale tolerance is the number
E(R) = sup{e: Ja € E(R), ||a|| = €, B(0) N Sk C E(R)}. (32)

The time-scale tolerance is defined precisely so that we have the following elementary property, whose
proof we omit.

Proposition 4.1. Given a uniform exponential regulator R = (o,w), the time-scale tolerance behaves as a
robust stability threshold for the impulsive system (1); if ||a|| < E(R), then p(R,a) < 1. In other words,
systems (1) the impulse extension equation (5) induced by (p,a) are both stable, for all ¢ € R.

As should be expected, if the regulator is not chosen wisely, the time-scale tolerance for the given regulator
might be zero. This is not the case if one obeys the guidelines of, for example, Corollary 3.1.3.

Theorem 4.1. Suppose o € {oa,0r}. If R, = (o,w) is a uniform exponential regulator and (2) is asymp-
totically stable (i.e. pMy < 1), then E(R,) is nonzero and the map a — p(Ry,a) satisfies

lim p(Ry,a) = pMo,

a—0

where the limit is for a € S}.

Proof. By the proof of Lemma 3.1, the bound

[Jw (s, a)| |55

/ X (s mp)er(s;a)ds| <
ag

Sk (a)

holds for £ = 0,...,¢c— 1, for all ¢ = i + € € (0, w). That is, the bound is independent of the choice
of . Since we can write

0
1
M(p,a)= [ X(mrsr;m) /X_1(3§Tk)5k(57a)ds+a / I+ XY (s;h)Brds |,

k=c—1 Si(a) Si(a)

it follows that M (p, a) converges to My as ||a|| — 0, uniformly in . Consequently, for all € > 0, there exists
0 > 0 such that, for ||a|| < §, we have ||M (¢, a) — Mp|| < € for all ¢ € (o, w). From the continuity of the
spectral radius map, X — pX, we conclude that, for all € > 0, there exists 6 > 0 such that, for ||a|| <, we
have [pM (¢, a) — pMy| < € for all ¢ € (o, w). In particular, we must have

sup pM(p,a) — Mo
p€e(o,w)

= |p(Rs,a) — pMo| <.

We conclude that p(Ry,a) — pMg as a — 0 in S}.
If we choose € = |1 — pMpy|, there exists § > 0 such that

|p(Ro,a) — pMo| < [1 — p(My)],

provided ||a|| < d. Consequently, p(Ry,a) < 1 for this range of ||a|| < §, indicating that the set & (R,)
contains Bs(0) NSk It follows that the set
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{e:Ja € &(Ry):la] =¢,B(0)NSF CE(Ry)}

is nonempty and contains 4 > 0 and therefore has nonzero least upper bound. This least upper bound is
precisely the time-scale tolerance, £,(R,). O

The function a — p(R,,a) can be made continuous on the entirety of S¥, although the most natural
assumption to impose requires restricting to sets of uniformly (o, w)-regulated families of impulse extensions
that also satisfy an equicontinuity-like condition. Such an assumption is too strong to impose for most
practical problems; as such, the result is not very helpful and is omitted.

In practice, the time-scale tolerance is difficult to calculate. It is much easier to provide a method of
finding a lower bound to the time-scale tolerance by taking advantage of its definition, which allows for
approximation by pseudospectral radii. Recall that the e-pseudospectral radius, p.A, of a matrix A is
defined by

peA =max{pB: ||A— Bl <e€}. (33)

For additional information about the pseudospectral radius, other pseudospectra and their computation,
see [9,11,13]. In particular, we have the following proposition.

Proposition 4.2. Let a uniform exponential requlator R for the (T, c)-periodic impulsive differential equation
(2) be given. Suppose the inequality

1M (g, a) = Mo|| < n(a) (34)

is satisfied for all ¢ € R and all a € S¥, for some function n: SF — R. The following are true.

L. p(R,a) < ppayMo for all a € S}.
2. The following inclusion is valid:

E«(R) ={a € 8} : poayMo < 1} C Eu(R).
3. Let h denote the unique solution of the equation pp My = 1. The inequality
€/(R) = min{|[a|| : n(a) = h,a € 57} < &(R)
is valid. If ||a|| < E(R), then pM(p,a) < 1 for all ¢ € R.

Proof. By definition of the pseudospectral radius, we have

pn(a)MO = Sup{p(Z) 1z € Rnxn’ ||Z - MO” < TL(CL)}
> sup{pM(p,a): p € R, [|[M(p,a) — Mol|| <n(a)}

= sup{pM(p,a) : ¢ € R} = p(R, a),

where the inequality follows by condition (34). The other two conclusions of the theorem follow directly
from the above inequality. O

Construction of an appropriate function n : S — R that satisfies the condition of inequality (34) is
important. Additional desirable properties include having n be continuous and strictly monotone increasing,
for then the set £(R) becomes star-convex and & (R) can be seen as the minimum norm of all vectors lying
in a compact hypersurface (¢ — 1)-dimensional hypersurface.
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Lemma 4.1. Let a uniform exponential requlator R be given, and suppose there exists a continuous, monotone
nondecreasing function n : S¥ — R satisfying inequality (34). Then g&(R) is star-convex with basepoint
0 € S*. If, in addition, n is strictly monotone increasing and extends to a continuous function m: Sf — R
and E(R) < oo, then the set

EF(R) ={a €S :7la) = h} (35)

is a compact hypersurface and &(R) = min{||a|| : a € ES(R)}, where h denotes the unique solution of the
equation pp My = 1.

Proof. For simplicity of notation, we will write U = &,(R). We first prove U is star-convex with base-
point 0. If @ € U, it follows that, for all ¢ € (0, 1), at least one index of ta must be strictly less than the
corresponding index of a; for example, suppose (ta), < ag. Since n is monotone nondecreasing, we obtain
n(ta) < n(a), which implies, by the monotonicity of the pseudospectral radius, that p,,(1q) Mo < pya) Mo < 1.
Star-convexity of U follows.

Next we show that V = EF(R) is a compact hypersurface. Define a map ¥ : V — ¥(V) C Re! by
Vi(xl 22, 2% = (21, 2%,...,2¢71). Since ¥ is a projection, it is continuous.

Now let y € U(V). Since y € ¥(V), there exists y° € [0, A7.—1] such that n(y,y°) = h. However, since
n is strictly monotone increasing, we can have n(y,y¢) = h = n(y,t) if and only if y¢ = ¢. Consequently,
to each y € ¥(V), we can associate a unique y¢ € [0, A7._1] such that (y,y¢) € V. It follows that ¥ is
invertible and ¥~1(y) = (y, y°).

Next we show that ¥~! is continuous. Suppose ¥~! is discontinuous at some y € ¥(V), so there exists
some sequence y, — y with W=1(y,,) -» ¥~1(y). Since V is compact, it follows that there exists a subse-
quence, also denoted ¥,,, such that ¥=1(y, ) — 2 # ¥~1(y). By compactness, x € V, so there must be some
z € U(V) such that x = ¥~1(2). Hence ¥~1(y,,) — ¥~1(2). By continuity of ¥, we have

Yn =PI (yn)) = (T (2)) = 2.

By uniqueness of limits, since y,, — y and v,, — z, we must have y = 2. Therefore U=1(y) = U=1(2) = x,
which is a contradiction to ~1(y) # 2. We conclude that W' is continuous and hence that ¥ is a
homeomorphism. Therefore V' is a compact hypersurface. 0O

In finding a function n satisfying inequality (34), the following combinatorial representation of || M (p, a)—
Moy|| is helpful. The proof follows by an inductive argument and is omitted.

Lemma 4.2. For natural number z < ¢ — 1, let ©, denote the (z)—element sequence of z-element subsets

of the set {0,1,...,c — 1}, let ©,(n) denote the nth element' of this sequence and let ©,(n) denote its
complement in {0,1,...,¢ — 1}. For all periodic impulse extensions ¢ = {@i} for the periodic impulsive
differential equation (2), we have the inequality

c—1 (3)
1M(p,a) = Mol <D | [T X)) (E+B)I [ 11X (rssm) [Co+ P, (36)
k=0r=1 | jeO(r) vEOL(T)
1
where Cy =Cy(p,a) = - / (X (s;7,) — I)ds| By, (37)
! Sy (a)

1 For a consistent ordering, note that it is always possible to uniquely order the sequence ©. in such a way that the nth element,

O.(n), satisfies Zme@:(n) r=n—1+ @
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P, = / X (s;7y) [%(s a)——B}ds. (38)

Sy(a)

The bound appearing in (36) generally increases exponentially with ¢, since there are 2¢ — 1 terms in
the sum. Moreover, the bound is not optimal, since it is obtained by repeated application of the triangle
inequality. It is always possible to express M (p, a) — My exactly; that is, without resorting to upper bounds.
The following examples provide exact formulae for small values of c.

Example 4.2.1. If ¢ = 1, we have the equality
M((p,a)—M():X(T—FTQ;To) [Co+Po]. (39)

Example 4.2.2. If ¢ = 2, we have the equality

M(np,a) —MO :X(TQ;Tl) |:[Cl —|—P1}(X(Tl;7'0) |:CO +P0 +I+Bo:|> —|— (I—f—Bl)X(Tl;To)[CO —|—P0]
(40)

The bound appearing in (36) indicates that, to ensure the existence of an upper bound of the form (34)
that is continuous (and possibly monotone increasing) and defined on the closure of S, it is enough to
ensure that each of the functions C, and P, of (36)—(37) each have continuous (and possibly monotone
increasing) upper bounds with respect to the input a € S¥, where the bound holds uniformly for all ¢ € R,
given a regulator R.

In the following, we outline an algorithm that can be used to compute é\t(R) To this end, we write the
symbolic expression appearing on the right-hand side of (36) as a function of the functions C}, and Py. The
proof follows from the lemmas of this section and the above remark and is omitted.

c—1 (f)
n(@,CP) =S| TT IXmum)E+ Bl [T IXesm) [Co+ R (41)

k=07r=1 [je04(r) vEB(r)

Algorithm 4.1. Let R = (o,w) be a uniform exponential regulator for the asymptotically stable
(T, ¢)-periodic impulsive differential equation (2). Suppose o is defined as in (17) and w satisfies the condi-
tions of Lemma 4.3.

1. Choose continuous (and possibly monotone increasing) functions C* : S — RS and P : S: — RS
that satisfy the inequalities ||Cy(a)|| < C}f (a) and ||Py(a)|| < P{ (a) for k=0,...,c—1.

2. Calculate the unique solution, h > 0, of the equation pp My = 1.

3. Find the global minimizer, a*, of the function f(a) = [|a||, subject to the constraints a € S* and
n(a,CT,P*) —h=0.

Then, ||a*|| = &(R).

4.1.1. Choices of CT and PT guaranteeing monotonicity of n(a, CT, PT)
Under certain assumptions on the uniform exponential regulator, we can guarantee the existence of
monotone increasing upper bounds for C' and P.

Lemma 4.3. Let R = (o,w) be an exponential regulator for the (T, c)-periodic equation (2), with o as
given in (17). Suppose the functions a — sup,es, (o) ||wk(s,a)|| are continuous for each k = 0,...,c— 1.
There exist functions C’,j and Pk , with k = 0,...,c — 1, mapping S¥ — R*, satisfying the znequalitz’es
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[|Cr(p,a)|| < Cif (a) and ||Py(p,a)|| < P (a) for all a € S} and all ¢ € R. The functions C;i and P are
monotone nondecreasing on S, and if a < b with ay < by, then C;" (a) < C;F (b) and P;f (a) < P (b).

Proof. We define the functions C’,j and P,j as follows.

Clj(a;sup) = sup |[(X (s;7%) — I)Bgl|
s€Sk(a)
(42)
Pl(a;sup) = sup wg(s,a).
s€Sk(a)

C’,j' is clearly monotone nondecreasing, as it is defined by the supremum of a continuous function on the set
Sk(a), which satisfies the inclusion Sg(a) C Sy (b) whenever a < b. The situation is similar for P, (a), due
to the hypotheses on the functions wy. It also follows that P (a) < P (b) whenever a < b and ay < by.
The inequalities ||Cy(a)|| < C;f (a) and ||Py(a)|| < P; (a) follow from elementary integral inequalities and
inequality (29). O

Note that the functions C,j and P,j described in the proof of Lemma 4.3 may not be optimal, in that
there may be uniform bounds for Cj, and Py that are monotone increasing but smaller than the bounds
provided by the lemma. For example, the following bounds hold uniformly for ¢ € (o, w):

1
o < L / (X~ (s:7,) — I)By||ds = C; (4; Int), (43)
agk
Sk(a)
o(7i—s)
pes [ S0 pr ) (44)
T
Sk (a)

w?(s,a)ds = P (a; CS). (45)

Depending on the specific application, we could be more conservative. If the upper bounds are still monotone
increasing in aj and continuous in a, they could be more suitable for the purposes of approximating the
time-scale tolerance.

4.1.2. Discussion of Algorithm j.1

In practice, implementing steps 1 and 2 Algorithm 4.1 do not pose much difficulty. Step 1 always has
a worst-case choice to fall back on: Cf (a;sup) and P, (a;sup). The bounds P;f (a;Int) and P;f(a; CS) of
(44)—(45) could be computed exactly for specific choices of uniform regulators R = (o, w). There is also
the upper bound for Cj, provided by C; (a;Int) of (43). Note that all of these bounds can be ensured to
be continuous (even if they are not monotone increasing) by an appropriate choice of uniform exponential
regulator. If one wishes for the bounds to be monotone increasing, it is worth mentioning that all of the
suggested bounds for P can be made monotone increasing by an appropriate choice of exponential regulator,
and the monotonicity of the bounds for C' could be tested statistically, if needed.

We can also choose an optimal bound by simply taking the minimum of any particular set of bounds.
For example, if one chooses

Plj(a) = min{P,j(a; sup), P,j(a;lnt), P,j(a; CS)},

(46)
C;f (a) = min{C; (a;sup), C;f (a; Int)},
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the resulting functions P+ and C* will be continuous (they are finite minimums of continuous functions) and
increasing, provided each estimate is also increasing (since a minimum of increasing functions is increasing).
By construction, they provide tighter estimates than each individual bound.

The second step of the algorithm involves solving the equation p, My = 1 for h > 0. Since h € R and
h +— pp My is monotone nondecreasing (but typically nonsmooth), the bisection method is applicable.

The third step will typically be the most computationally expensive. While S* is convex and the objective
f(a) = ||a|| is convex, the other constraint, c(a) = 0 with c¢(a) = n(a,Ct, PT) — h, generally destroys the
convexity of the domain; the resulting set, gs(R), could have no “nice” structure, or it could be star-convex,
by Lemma 4.1. We comment on a few methods now.

Monotonic optimization by reverse polyblock approzimation Suppose n(a) = n(a, C*, PT) is monotone.
The objective, a + ||al|, is also monotone, and the domain, S*, is convex. This problem can therefore
be solved by reverse polyblock approximation as follows. Following [20], define G = S C [0,b], with
b = max A7y; G is compact and normal with nonempty interior. If we take H = R} \gs(R)o, then H is
closed, and its complement in R} is &,(R)°, which is a normal set since £,(R)° is defined by 0 < n(a) < h
and n is increasing. Therefore H is closed and reverse normal. By construction, G N H contains the level
set {a € S : n(a) = h} = EF(R).

Now define the objective function f : [0,b] — Ry by f(a) = ||a||. By Proposition 11 of [20], any minimizer
of the problem

min{f(a) :a € GN H} (47)

must be an element of 07 H = (‘,A’;‘(R) Consequently, a global minimizer a* of (47) satisfies n(a*) —h =0
and minimizes a + ||a|| over the level set g’j (R). By Proposition 4.2, a global minimizer a* of problem (47)
satisfies ||a*|| = é\'t(R) The reverse polyblock approximation algorithm, described in [20], finds an e-optimal
solution, which, for our problem, means that the approximate minimizer a* satisfies the inequality

Ei(R.e) = |a*]| — e < &(R).

However, since @* is a feasible solution, we must have ||a*|| > & (R). Using this fact and rearranging the
above inequality, we obtain

0 < &(R) — E(R,e) < e (48)

Therefore the reverse polyblock approximation algorithm generates an e-underestimate of gt(R), which we
call &(R, e).

Lower approzimation by piecewise-constant functions on a grid When ¢ = 1 and n(a) is continuous and
monotone strictly increasing, the problem is trivial to solve, since all that is needed is to solve the equa-
tion n(a) = h for scalar a € [0, Arp]. This can be accomplished by the bisection method, or possibly a
quasi-Newton method. Moreover, there is a unique solution when n is monotone strictly increasing. If n is
only monotone nondecreasing, a quasi-Newton method to find a feasible solution followed by a some sort of
bracketing method should be sufficient to bracket the minimal solution to any desired level of precision.
When ¢ = 2 and n(a) is continuous and strictly monotone increasing, the hypersurface gj (R) is one-
dimensional. If [0, A7o] is discretized into a grid with N cells, [0, a], [ag,ad], .. ., [ay ~*, ad], EF(R) can be
parameterized along the vertices of the cells by solving the equation n(af*,a]*) = h for a* € [0, Ary],* for

2 If no solution exists, set al’ = ATy.
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5
n(ap,a1) = h
3
\
\ p(ag)

o

0 5
ay

Fig. 2. Plot of a (theoretical, for illustrative purposes only) hypersurface, n(a) = h, with n continuous and monotone strictly

increasing, and ¢ = 2 impulses per period. The piecewise-constant under-approximation, p(ag), generated by a grid with 9 cells,
is plotted (thin dotted black line), and the point that generates the lower estimate for the time-scale tolerance is indicated by a
star. All points a = (ag, a1) within the interior of the disc (grey line) with radius r = [|a(9)|| < £ (R) (notice that the inequality
is strict because the disc does not intersect the hypersurface) would satisfy the inequality p(R,a) < 1. Also, one can see that
the upper bound provided by (49)—(50) is not very conservative in this case; the bound can certainly be improved, although the
notation gets cumbersome.

each vertex af’. A piecewise-constant under-approximation of the parameterization can then be constructed

as follows.
m—+1 m—+1
(ao) ai"™, ag € [ag’,ag""),
plao) =
N N
ay, ap = ay
The function p is indeed an under-approximation, since, for ag € [a’,af""!), we have n(ag,p(ag)) <

n(ad™t, a1 = h, and n(a), p(ad)) = h. If one calculates

a(N) = argmin{||a|| : a = (ag’,a;"+1) cm=1,...,N -1},

then, by construction, ||a(N)|| < &(R). In particular, one can show that the inequality

1
2

& ATIQ m|2
0 < &(R) —[la(Nl = | 7z + max|Aay’| (49)

holds. Since n is continuous, the maximum term becomes arbitrarily small as N — oco. Therefore, to obtain
the precision desired, one needs only iterate the procedure on N, successively subdividing intervals, until
the right-hand side is smaller than the desired tolerance. See Fig. 2 for a visualization.

The above approach can be similarly applied to problems with cycle number ¢ > 2, with slight modifi-
cations. If C' = [zg, yo] X -+ X [Te—1,Ye—1] C R is a cell, we denote C~ = [zg,yo) X -+ X [Te—1,Ye—1) and

Cl:(afo,...,mc_l), Orz(y(),...,yc_l).
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The modification is that [0, A7) x [0, A7._1] is discretized into cells Cy,,, m =1,.. ., NQCfl, and the function
p is defined in such a way that

p(C,,) = arg{ac—1 : n(C}, ,ac—1) = h}.

The rest of the algorithm is essentially unchanged; a(N) is the argument that minimizes ||a|| over the set
of a = (C!,,p(C;.)). The resulting bound satisfies the inequality

2

c — max 7"2
(D—Al + max |p(C,,) _p(ﬂ-om)2> ) (50)

0 &) -l < (0

where 7 is a partial function on half-open cells that maps a given cell to the one that is upper diagonal to
it; the map is defined by the equivalence

m(Cp) =C; = C;, =Cj.

Note that the maximum is only taken over those cells where 7(C,,

) exists (these are the cells for which

C7r. is not an element of the boundary of [0, A1) x ...[A7.—1]). Again, the above can be iterated, taking
N as large as needed, since the maximum term consists of a difference between evaluations of a continuous
function defined at opposing vertices of a hypercube of side length %, which will become arbitrarily small
as N — 0. The iterations require more recursion than in the case ¢ = 2, however.

4.2. The time-scale tolerance for unstable periodic systems

The time-scale tolerance can be defined for unstable systems as well, provided certain conditions on the
center subspace of the iterated map x — Myx hold. If there is a center subspace, it is possible for the spectral
radius to oscillate between greater than or less than one on any time scale, as Example 3.4.2 demonstrates.
This defect makes it generally impossible to study time-scale tolerances in systems for which there is a
center subspace but no unstable subspace. However, if there is an unstable subspace, such defects do not
cause issues. The analysis of this section is inspired by a short discussion appearing in [4].

Definition 4.4. If R = (0, w) is a uniform exponential regulator and a € S¥, the (R, a)-lower pseudospectral
radius of (2), denoted p~ (R, a), is defined by

p(R,a) = ;g%pM(% a). (51)

The following proposition appears in [4].

Proposition 4.3. Let R be a uniform exponential regulator for (2). Suppose ||M (p,a) — My|| < n(a) for some
continuous function n(a) satisfying n(0) =0, for all a € S¥. The following inequality holds.

p~(R.a) = p Mo = inf{pM : ||M — Mol| < n(a)}. (52)

Proof. We follow the string of inequalities

inf pM(p,a) > inf{pM: 1M = Mol < sup [|M(p,a) — Mo|}

pER pER
— nf{pM ¢ |[M — Mo|| < inf{e : | M(p,a) — My|| < 2, Yoo € R}}
> inf{pM : [|[M — My|| < n(a)} = p,, Mo,

thereby obtaining the result claimed. O
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Definition 4.5. Suppose the (T, ¢)-periodic impulsive system (2) has no Floquet multipliers on the unit circle
and is unstable. If R is a uniform exponential regulator, the R-unstable set, denoted &,(R), is defined as
follows.

Eu(R)={a€S;:p (Ra)>1}. (53)
The R-time-scale tolerance is the number
Ei(R) =sup{e: Ja € E,(R),||a]| = €, B(0) N Sk C EL(R)} (54)
the time-scale tolerance is defined as for stable systems.

The proof of the following proposition is essentially the same as the analogous proof of Theorem 4.1, and
is omitted.

Proposition 4.4. Let My denote the monodromy matriz for the (T, c)-periodic equation (2). Let R = (o, w)
be a uniform exponential requlator with o € {oa,0pr}. Suppose pMy > 1.

1. The R-time-scale tolerance exists.
2. limg0 p~ (R, a) = pMy, where the limit is for a € S*.

Once again, the time-scale tolerance behaves as a robust (in)stability threshold. If ||a|| < &,(R), then
the impulse extension equation induced by (g, a) will be unstable for all ¢ € R. The following corollary is
obvious and is not proven.

Corollary 4.1.1. Suppose the conditions of Proposition 4.3 hold. Let EA}(R) be the solution of the optimization
problem

EA(R) = sup{]lal|  a € By (0) € Eu(B)}, (55)
with

Eu(R) ={a € S : Mo > 1}.
Then &(R) > &(R), where E(R) is the R-time-scale tolerance for the (T, c)-periodic impulsive system (2)
satisfying pMo > 1. If n is monotone strictly increasing and extends continuously to Sk, then

E/(R) = min{][al|  py oy Mo = 1, a € 57} (56)

n(a)
The above problem is not as well-posed as the associated problem for asymptotically stable systems
because the map

M — p- M = min{pN : ||[N — M|| < €}

is not as well-behaved from a numerical perspective, and the computation of this map is an essential step in
calculating & (R) as in (56). For background on the problem of minimizing the spectral radius, one should
consult the works of, for example, Burke, Lewis and Overton [3], Overton and Womersley [16] and Nesterov
and Protasov [15]. For our purposes, however, it is not difficult to see that the map e — p- M is monotone
decreasing (although not strictly decreasing, since p_ M = 0 for € > ||M]||, for example) and continuous
for each fixed M, so the composition a p;(u)Mo will generally be continuous and monotone decreasing,
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provided n is continuous and increasing. As such, assuming p;(a)MO can be computed, Algorithm 4.1 and
subsequent discussions can be adapted to the present case of unstable impulsive systems. We will not delve
further into the problem at this time.

4.8. The time-scale tolerance for general homogeneous linear systems

If (2) is not periodic, one can abstractly define the time-scale tolerance via exponential dichotomies. For
brevity, in this section, the symbol E(p,a) will refer to the impulse extension equation for (2) induced by
(p,a). In this section, without loss of generality, we take 79 = 0.

Definition 4.6. The impulse extension equation E(p,a) possesses an exponential dichotomy if there exists a
projector P such that the fundamental matrix solution of E(p,a), denoted U(t) and satisfying U(0) = I,
satisfies the inequalities

[|U)PU(s)|| < Ke™ (=) s <t <00 (57)
t — “H(s)|| < Le PV s>1t>—o0 58
U@y (I —P)U! Le As=1)

for positive constants «, 3, K, L, whenever s € P(y, a). In this case, we will write E(p,a) ~ P.

Definition 4.7. Suppose (2) possesses an exponential dichotomy with projector Py. Let a uniform exponential
regulator R = (o,w) for (2) be given. The R-stable and R-unstable sets are defined as follows.

Es(R)={a€ S*":VpeR,3IP : E(p,a) ~ P, rank(P) = n} (59)
Eu(R)={a€ S*":VpeR,3IP: E(p,a) ~ P, rank(I — P) > 1}. (60)

By construction, £(R) and &£, (R) are disjoint.
Definition 4.8. Let R be a uniform exponential regulator for (2). The R-time-scale tolerance is the number
E:(R) = sup{l[al] - a € By (0) N S* C E(R) V Eu(R)} (61)
provided it is positive, where the notation X C Y V Z is understood as X CY V X C Z.

With the above definition, we clearly see that the defining property of the R-time-scale tolerance has been
maintained: if ||a|| < & (R), then, for all ¢ € R, the stable subspace of E(p,a) is n-dimensional (recall
the phase space is R™) if and only if the same is true for the stable subspace of the impulsive differential
equation (2). That is, F(p, a) and (2) have the same stability classification. Therefore the above definition
generalizes the associated definitions for periodic equations. Study of the existence of the above generalized
time-scale tolerance will not be considered in this article.

4.8.1. A consequence of Theorem 3.2
Theorem 3.2 suggests a method by which a time-scale tolerance can be defined for certain classes of asymp-
totically stable aperiodic systems, independent of whether or not they possess exponential dichotomies.

Theorem 4.2. Let R denote a set of impulse extensions for (2) such that, for all ¢ € R, conditions A3
and A4 of Theorem 3.2 hold for all a € S*, with uniform (o, w)-regularity in the mean. Assume also that
conditions A1, A2 and A5 of Theorem 3.2 are satisfied. For all ty € R, there exists §(R) > 0 such that, for
all p € R, the impulse extension equation E(p,a) is asymptotically stable at ty and uniformly attracting on
R whenever ||al|oo < §(R). If E(R) exists, then E(R) < 6(R).
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Proof. If one examines the proof of Theorem 3.2, one will notice that the functional representation of
is never used; only the upper bounds in (20) are needed. Since we have removed the restriction that the
bounds are only satisfied in the limit as @ — 0, the conclusions of the theorem hold uniformly for all ¢ € R.
It follows that there exists 6 > 0 such that, if ||a|| < J, E(p, a) is asymptotically stable on P(¢p, a), for all
¢ € R. Taking the supremum of all such é > 0 produces 6(R) > 0.

Suppose & (R) exists. We must have Bg,(gy(0) N S* C &(R); otherwise, there would exist ¢ € R and
arbitrarily small a € S* with E(p, a) ~ P such that rank(I —P) > 1, which would contradict the asymptotic
stability of E(p,a) for ||a|lcc < 6(R). But this implies that, for all a € S* with ||a|]| < &(R), we have
E(p,a) ~ P with rank(P) = n, which implies E(p, a) is asymptotically stable. By definition of 6(R), we
obtain &(R) < 4(R). O

As the above theorem demonstrates, under certain conditions, we can define a time-scale tolerance that
is, to a certain extent, more optimal than the one provided by Definition 4.7, without resorting to discussions
of exponential dichotomies.

4.4. A physical interpretation of uniform exponential requlators

In practice, to compute the time-scale tolerance for a given impulsive differential equation, one must first
select a uniform exponential regulator, R = (o, w). There is not much choice over the sequence o, since the
time-scale tolerance may not exist if we do not have o € {o4,0p}. However, there is much freedom in the
choice of w. Recall that the uniform exponential regulator is characterized by inequality (29), which we can
write more suggestively as

wy(t, a)

ek — 1

et 0) = putta)]| < b(t,a, w),

where @ (t, a) is the mean of i (t,a) on Si(a). As such, the quantity on the right of the inequality represents
a functional upper bound for the deviation of ¢y from the mean, on the interval in which the vector field
(2) calls it.

For homogeneous systems, we have a fairly simple characterization. If, on the interval Sk(a), the system
evolves according to the differential equation

¥ = A(t)x + pr(t,a)z(mg),
then the solution satisfies
x(t) = T(t; o) + err(t, Rz,

where Z(¢; x)) is the solution of the IVP

o' = At)r + — Bra(my), x(Tk) = @,
k

and err(t, R) satisfies the inequality

€okak — 1

t
—1
[lerr(¢, R)|| S/HX (S)Hwk(s’a)ds,
Tk

where X’ = A(t)X and X (1) = I. Interpreting Z(¢; zx) as the solution of the “impulsively averaged” impulse
extension equation, the difference between the true solution, z(¢;x), and the solution of the averaged
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equation, T(t; xk), is at most ||err(¢, R)||xx in norm. When o = {0} is chosen properly (see Theorem 3.1
and associated corollaries), the error tends to zero as a — 0.

From the point of view of applications, this suggests that if ¢, represents some sort of external forcing
to the system being modeled, and the forcing acts as a constant under optimal conditions on the duration
of the forcing, then one would expect to have §(¢, a, wy) =~ 0 for ¢t € Si(a) whenever ay > 11, and [ry, A7y
is the optimal operational range of the forcing function.

If the forcing function is subject to increased error in operation if the duration of the control is less
than the minimum of its optimal operational range, one should further expect to have ay — d(t, a, wy) be
strictly decreasing.

If the error associated to the forcing function is ultimately bounded, one would propose

lim sup ||(5(t, ag, wk)”Sk(a)

ap—0t
to be finite. On the other hand, if the error of the forcing function is unbounded or, for physical reasons,
some range ap € [Tk, Tk + qx] of durations of impulse effect is not physically attainable (e.g. the forcing
function represents the effect of a physical component on the system and is bound by physical constraints),
then it would be expected that the above limit superior be infinity.

As such, for different applications, a different choice of w might be more appropriate. One family of

functions for which the above limit superior is infinity is given by

wi(a) = Ci(t,ar) - a3/,

where C(t, ax) is a continuous and positive on [7g, Tg4+1] X [0, A1] and v > 1. Choosing C and ~ carefully,
one can ensure the desired monotonicity properties of 4.

5. Discussion

In Section 3, families of (o, w)-regulated impulse extensions are introduced. It was shown (Theorem 3.1)
that the solutions of the impulse extension equation for (1) induced by (p,a) converge pointwise to the
associated solution of the impulsive differential equation as ||allcc — 0, provided ¢ is (o, w)-regulated.
Uniform convergence is also shown to be possible on particular bounded sets. In all cases, the sequence o
must be chosen carefully, but, under certain conditions (Corollary 3.1.2), it can be chosen to be a constant.

Following this, we specialized to periodic equations. Corollary 3.1.3 demonstrated that Floquet multipliers
converge to those of the associated impulsive system as the step sequence a becomes small, provided the
impulse extension equation is generated by a (o, w)-regulated family of impulse extensions. Finally, we
provided a constructive result for general, aperiodic systems (Theorem 3.2), where the proof was based on
Gronwall’s inequality and estimations of infinite products.

Section 4 defined the time-scale tolerance, first for asymptotically stable periodic systems (Section 4.1),
where an algorithm was provided to compute a lower bound (Algorithm 4.1). This algorithm was discussed
in Section 4.1.2, where two methods were suggested to solve a particular optimization problem that is needed
to implement the algorithm.

Next, the time-scale tolerance was defined for unstable periodic impulse systems (Section 4.2) for which
the monodromy matrix, My, satisfied pMy > 1. This problem is more difficult to solve than for asymp-
totically stable systems, although, assuming one can efficiently minimize the spectral radius map over a
compact convex set, Algorithm 4.1 could be adapted to the unstable case.

Finally, we defined the time-scale tolerance for general homogeneous linear systems (Section 4.3) by
means of exponential dichotomies. The resulting time-scale tolerance exhibits the same “stability threshold”
properties as the analogous specific definitions for periodic systems. Using Theorem 3.2, we proved that,
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under certain circumstances, one can define a stability threshold for asymptotically stable impulsive systems
independently of exponential dichotomies (Theorem 4.2), and the threshold is, in a particular sense, “better”
than the time-scale tolerance defined by exponential dichotomies.

All time-scale tolerances are defined with respect to a uniform exponential regulator (Definition 4.1). In
Section 4.4, we discussed how uniform exponential regulators should be selected in applications, and their
physical interpretation.
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