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The time-scale tolerance for linear ordinary impulsive differential equations is 
introduced. How large the time-scale tolerance is directly reflects the degree to 
which the qualitative dynamics of the linear impulsive system can be affected 
by replacing the impulse effect with a continuous (as opposed to discontinuous, 
impulsive) perturbation, producing what is known as an impulse extension equation. 
Theoretical properties related to the existence of the time-scale tolerance are 
given for periodic systems, as are algorithms to compute them. Some methods are 
presented for general, aperiodic systems. Additionally, sufficient conditions for the 
convergence of solutions of impulse extension equations to the solutions of their 
associated impulsive differential equation are proven. Counterexamples are provided.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Impulsive differential equations provide an elegant way to describe systems that undergo very fast changes 
in state [2,12,18]. These changes in state occur so quickly that they are idealized as discontinuities. Impulsive 
differential equations have a host of applications, including pulse vaccinations [1,8], seasonal skipping in 
recurrent epidemics [19], antiretroviral drug treatment [10,14] and birth pulses in animals [17].

Impulse extension equations have been put forward as a framework to study properties of impulsive 
differential equations that remain invariant if one replaces the impulse effect by a continuous perturbation 
[5]. Results on existence and uniqueness of solutions, as well as specialized results for linear periodic systems, 
have been developed [6,7].

In the present article, two similar but ultimately different problems are solved. First, given a linear impul-
sive differential equation, we associate to it a family of impulse extension equations that is parameterized by 
its step sequences. We then provide sufficient conditions under which the solutions of the impulse extension 
equation converge to those of the impulsive differential equation, as the step sequence becomes small. These 
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sufficient conditions are then tied to results relating to stability of the family of impulse extension equations, 
relative to the impulsive differential equation that generate it.

Following this, the time-scale tolerance is introduced first for linear, periodic impulsive differential equa-
tions, and then in general linear systems. The time-scale tolerance behaves as a robust stability threshold; 
if the norm of a given step sequence is smaller than the time-scale tolerance, than all impulse extensions 
equations from a particular class will have the same stability classification as the associated impulsive dif-
ferential equation. From the point of view of applications, this indicates that if an impulsive differential 
equation models some physical process, then the approximation by an impulsive differential equation is, in 
a certain sense, “valid”, provided the perturbations that are idealized as impulses occur on a time-scale that 
is smaller than the time-scale tolerance. Methods to compute the time-scale tolerance are proposed.

2. Background material on impulse extension equations

Throughout this paper, we will be interested in continuous systems that approximate the linear, finite-
dimensional impulsive differential equation,

dx

dt
= A(t)x + g(t), t �= τk,

Δx = Bkx + hk, t = τk,

(1)

as well as its associated homogeneous equation,

dx

dt
= A(t)x, t �= τk,

Δx = Bkx, t = τk.

(2)

It is assumed that the sequence of impulse times, {τk}, is monotone increasing and unbounded. Also, we 
assume all functions appearing in the differential equations above are sufficiently regular to guarantee that 
for any (t0, x0) ∈ R × R

n, there is a unique solution x(t) defined on [t0, ∞) satisfying x(t0) = x0. For 
example, it suffices to have all functions be bounded and measurable on compact sets.

We now comment on some notation related to sequences that will be relevant. If s = {sn} is a real-valued 
sequence, we define Δsn = sn+1 − sn to be the forward difference. Also, indexed families of sequences, such 
as {sj : j ∈ U} for some index set U , will always have their index appear in the exponent. As such, the 
symbol sjn indicates the nth element of the sequence sj , for j ∈ U .

The following definition of an impulse extension equation for (2) is a modified version of that appearing 
in [7]; the present definition is for linear systems, and allows us to more concretely study the convergence 
of their solutions, which is necessary to fulfill the objective of this article.

Definition 2.1. Consider the linear impulsive differential equation (1).

• A step sequence over τk is sequence of positive real numbers a = {ak} such that ak < Δτk for all k ∈ Z. 
We denote Sj = Sj(a) ≡ [τj , τj + aj) and S = S(a) ≡

⋃
j∈Z

Sj . The set of all step sequences will be 
denoted S∗, and is defined by

S∗ ≡ {a : Z → R+ , 0 < ak < Δτk}.

• A sequence of functions ϕ = {(ϕB
k , ϕ

h
k)},

ϕB
k : R× R

+ → R
n×n, ϕh

k : R× R
+ → R

n,
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is a family of impulse extensions for (1) if, for all k ∈ Z and all a ∈ S∗, the functions ϕξ
k(·, ak) are locally 

integrable and satisfy the equality ∫
Sk(a)

ϕξ
k(t, ak)dt = ξk, (3)

for ξ ∈ {B, h}.
• Given a ∈ S∗ and a family of impulse extensions, ϕ, for the impulsive differential equation (1), the 

impulse extension equation associated to (1) induced by (ϕ, a) is the following differential equation with 
piecewise-constant arguments:

dx

dt
= A(t)x + g(t), t /∈ S(a),

dx

dt
= A(t)x + g(t) + ϕB

k (t, ak)x(τk) + ϕh
k(t, ak), t ∈ Sk(a).

(4)

• To a homogeneous impulsive differential equation, (2), we can also consider the associated homogeneous 
impulse extension induced by (ϕ, a):

dx

dt
= A(t)x, t /∈ S(a),

dx

dt
= A(t)x + ϕB

k (t, ak)x(τk), t ∈ Sk(a).
(5)

Definition 2.2. Let a family of impulse extensions, ϕ = {(ϕB
k , ϕ

h
k)}, and a step sequence a ∈ S∗ be given. 

A function y : I → R
n defined on an interval I ⊂ R is a classical solution of the impulse extension equation 

(4) induced by (ϕ, a) if y is continuous, the sets I ∩ Sk(a) are either empty or contain τk and y satisfies the 
differential equation (4) almost everywhere on I. Given an initial condition

x(t0) = x0, (6)

with (t0, x0) ∈ R × R
n, the function y(t) is a solution of the initial-value problem (4)–(6) if, in addition, 

y(t0) = x0. The notation y(t; t0, x0, a) means that y(·) = y(·; t0, x0, a) is a solution of the initial-value 
problem (4)–(6) with impulse extension equation induced by (ϕ, a).

Definition 2.3. The predictable set of an impulse extension equation (4) for (1) induced by (ϕ, a) is the set

P(ϕ, a) = R \

⎧⎪⎨⎪⎩t ∈ S(a) : det

⎛⎜⎝I +
t∫

maxτk
{τk≤t}

X−1(s, τk)ϕB
k (s, ak)ds

⎞⎟⎠ = 0

⎫⎪⎬⎪⎭ , (7)

where X(t, s) is the Cauchy matrix for the linear homogeneous ordinary differential equation x′ = A(t)x.

The following proposition is a restatement of Lemma 4.2 of [7].

Proposition 2.1. Consider an impulse extension equation for (1) induced by (ϕ, a). For (t0, x0) ∈ R ×R
n, the 

initial-value problem (4)–(6) with initial condition x(t0) = x0 has a unique solution defined on the interval 
I ⊂ R if and only if t0 ∈ P and for all I 	 τk + ak < t0, the inclusion τk + ak ∈ P holds.

We will also make use of the following representation of matrix solutions of the homogeneous equation, 
(5).
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Proposition 2.2. Suppose t0 ∈ P. Then there exists a matrix-valued function, U(·; t0) : [l, ∞) → R
n×n, with 

l = maxτk≤t0 τk satisfying U(t0; t0) = I, such that the unique solution of the initial-value problem x(t0) = x0
of the homogeneous initial-value problem, (5)–(6), for any x0 ∈ R

n, can be written as x(t) = U(t; t0)x0. In 
particular, we have the formula

U(t; t0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X(t; t0), t, t0 ∈ (τk + ak, τk+1]

X(t; τj)Lj
a(t; τj)

⎡⎣ k∏
r=j−1

X(τr+1; τr)Lr
a(τr+1; τr)

⎤⎦X(τk; t0)
t0 ∈ (τk−1 + ak−1, τk]
t ∈ [τj , τj+1], k < j

U(t; τk)U−1(t0; τk), t0 ∈ (τk, τk + ak)

(8)

where X(t; s) is the Cauchy matrix of the homogeneous ordinary differential equation x′ = A(t)x, and the 
function Lk : (a, t) 
→ Lk

a(t) is defined by

Lk
a(t) = I +

min{t,τk+ak}∫
τk

X−1(s; τk)ϕB
k (s, ak)ds. (9)

3. Convergence properties of impulse extension equations

3.1. Convergence of solutions with respect to the step sequence as a → 0

The main result of this section relates to the mode of convergence of solutions of the initial-value problem 
(4)–(6) with respect to the step sequence a ∈ S∗.

Definition 3.1. Let a family ϕ of impulse extensions be given for an impulsive differential equation (1). Let 
σ = {σk} be a sequence of positive real numbers, and let w = {(wB

k , wh
k )} be a sequence of pairs of functions 

wξ
k : [τk, τk+1] × [0, Δτk) → R with the property that wξ

k is continuous and vanishing at (τk, 0) and wξ
k(·, a) is 

integrable on Sk(a). We will say ϕ is (σ, w)-exponentially regulated in the mean, or simply (σ, w)-regulated, 
if

ϕξ
k(t, s) −

1
s
ξk = O

(
wξ

k(t, s)
1

eσks − 1

)
(10)

for t ∈ [τk, τk + s) as s → 0.

Lemma 3.1. Let a homogeneous impulsive differential equation (5) be given. Let X(t; s) be the Cauchy 
matrix of the homogeneous ordinary differential equation x′ = A(t)x. Suppose for each k ∈ Z, the inequality 
||X(t; τk)|| ≤ eσk(t−τk) holds for some σk > 0, for t ∈ [τk, τk+1]. If ϕ is a (σ, w)-regulated family of impulse 
extensions for (5), then Lk

a → I + Bk pointwise as a → 0. If N ⊂ [τk, τk+1] and no decreasing sequence in 
N converges to τk, then the convergence is uniform on N .

Proof. First, notice that we can write Lk
a as

Lk
a(t; τk) = I +

⎡⎢⎣ 1
ak

mk
a(t)∫

τk

X−1(s; τk)ds

⎤⎥⎦Bk +
mk

a(t)∫
τk

X−1(s; τk)εBk (t, ak)ds,

where εBk (t, ak) = ϕB
k (t, ak) − 1

ak
Bk and mk

a(t) = min{t, τk + ak}. Now let ak < t − τk, so we have ma
k(t) =

τk + ak. We then have
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1
ak

ma
k(t)∫

τk

X−1(s; τk)ds− I = 1
ak

τk+ak∫
τk

[
X−1(s; τk) −X−1(τk; τk)

]
ds,

which clearly converges to zero as a → 0, due to the continuity of X−1(s; τk). Therefore we conclude that

1
ak

τk+ak
n∫

τk

X−1(s, τk)ds → I.

As for the other integral, we have X−1(s, τk) = X(τk, s). We thus have the estimation

∣∣∣∣∣∣
∣∣∣∣∣∣
τk+ak∫
τk

X−1(s, τk)εBk (s, ak)ds

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

τk+ak∫
τk

eσk(τk−s)w
B
k (s, ak)

eσkak − 1Ckds ≤
Ck

σk
||wB

k (·, ak)||,

for some constant Ck > 0, where we used the asymptotic condition (10) and Gronwall’s inequality, and the 
norm on wB

k (·, ak) is the uniform norm over the interval [τk, τk + ak]. Since wB
k is continuous and vanishing 

at (τk, 0), we have that ||wB
k (·, ak)|| → 0 as ak → 0. Therefore we conclude that the integral term converges 

to zero. It now follows that Lk
a → I + Bk pointwise as a → 0.

The convergence is generally nonuniform because ma
k does not converge uniformly. However, the conver-

gence can be made uniform on N ⊂ [τk, τk+1] if τk is not an accumulation point of N . Take ak < inf N − τk
so that we have t > τk + ak for all t ∈ N , from which it follows that ma

k(t) = τk + ak on N . Then, the 
previous argument proceeds without modification, but the result holds uniformly for t ∈ N . �
Theorem 3.1. For any linear impulsive differential equation (4), there exists a sequence of positive real 
numbers, σ = {σk}, such that, for any (σ, w)-regulated family ϕ of impulse extensions for (4), the following 
are true.

• For all t0 ∈ R, there exists δ = δ(t0) > 0, such that, for a ∈ S∗ with ||a||∞ < δ and all x0 ∈ R
n, 

the impulse extension equation (4) induced by (ϕ, a) possesses a unique classical solution, x(t; t0, x0, a), 
satisfying the initial condition x(t0; t0, x0, a) = x0, and is defined for t ≥ t0.

• If det(I +Bk) �= 0 for all k ∈ Z, the function t 
→ x(t; t0, x0, a) converges pointwise to x(t; t0, x0, 0), the 
solution of the initial-value problem x(t0) = x0 for the impulsive differential equation, (1), as ||a||∞ → 0.

• If N ⊂ R is bounded and no strictly decreasing sequence in N has an impulse time τk as its limit, the 
above convergence is uniform for t ∈ N as a → 0.

In particular, it suffices to choose

σk =
τk+1∫
τk

||A(s)||ds. (11)

Proof. Throughout this proof, ϕ is a fixed family of impulse extensions for (1). The first part of the Theorem 
is trivial. If t0 = τk for some k, then we have τk ∈ P by definition. Conversely, if t0 �= τk but t0 ∈ (τk, τk+1), 
then as long as we have ak < t0 − τk = δ(t0), we will have t0 ∈ P. It now follows by Proposition 2.1 that, 
for all x0 ∈ R

n, there exists a unique solution of the initial-value problem x(t0) = x0 defined on [t0, ∞)
provided ||a||∞ < δ(t0). We will now denote the solution x(t; t0, x0, a) to indicate the dependence on x0
and a.
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Next, we will prove that x(t; t0, x0, a) → x(t; t0, x0, 0) uniformly for t ∈ N as ||a||∞ → 0, as stated in 
the third conclusion of the theorem. We will only prove the uniform convergence result, since this implies 
pointwise convergence everywhere.

Before we begin, note that it suffices to prove the convergence on a compact, connected interval. Indeed, 
if the convergence is uniform on the closure of N , then it is uniform on N itself, and if N is disconnected, 
then it must be contained in a finite union of connected intervals N1, . . . , Nn, each of which has the property 
of not having any impulse time as a left limit point. Therefore we will assume that the compact set N is a 
closed interval contained in (τk, τk+1] for some k.

Let ||a||∞ < δ(t0). Since t0 ∈ P, it follows by Proposition 4.2 of Church and Smith? [7] that we can write

x(t; t0, x0, a) = U(t; t0, a)x0 + xp(t, a),

where U(t; t0, a) is the matrix solution for homogeneous equation of (4) with step sequence a and satisfying 
U(t0; t0, a) = I, and xp(t, a) is the solution of the inhomogeneous equation (4) with step sequence a and 
satisfying xp(t0, a) = 0. By this decomposition, it suffices to prove the uniform convergence of U(t; t0, a)
and xp(t, a).

We first demonstrate the convergence of U(t; t0, a). For simplicity, we will assume t0 = τ0; the other cases 
follow by similar reasoning, due to the representation provided by equation (8). For t ∈ N ⊂ (τk, τk+1], we 
have

U(t, a) = X(t; τk)Lk
a(t; τk)

0∏
r=k−1

X(τr+1; τr)Lk
a(τr + ar; τr),

where we have suppressed the dependence on t0. Therefore,

||U(t, a) − U(t, 0)|| ≤ sup
t∈N

||X(t; τk)|| ·
∣∣∣∣∣
∣∣∣∣∣
(
L(t; τk)

0∏
r=k−1

X(τr+1; τr)L(τr + a; τr)
)

(12)

− (I + Bk)
( 0∏

r=k−1

X(τr+1; τr)(I + Br)
)∣∣∣∣∣

∣∣∣∣∣ . (13)

It suffices to prove that if a → 0, then Lj
a(t; τj) → I + Bk uniformly on N for each j = 0, . . . , k.

By the generalized Gronwall’s inequality, we will have ||X(t; τj)|| ≤ eσk(t−τj) for t ∈ [τj , τj+1], where the 
constants σj are given by (11). Define σ = {σk}. If ϕ is (σ, w)-regulated, Lemma 3.1 guarantees the required 
convergence of Lj

a(t; τj) for j = 0, . . . , k, uniformly on N . We conclude that U(t, a) → U(t, 0) uniformly 
on N .

Next we show that xp(t, a) converges to the associated impulsive solution. This will be established by 
induction on the structure of the compact set N .

Similarly to before, we will assume that t0 ∈ [τ0, τ1]. Other cases follow by similar reasoning. Suppose 
N = [N−, N+] ⊂ (τ0, τ1]. Then we have

xp(t, a) = X(t; τ0)
t∫

τ0

X−1(s; τ0)(g(s) + ϕh
0 (s, a0) · 1[S0(a)])ds + X(t; τ0)L0

a(t; τ0)x
p
0(a),

xp
0(a) = −L−1

a0
(t0; τ0)

t0∫
X−1(s; τ0)

(
g(s) + ϕh

0 (s, a) · 1[S0(a)]
)
ds,
τ0
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xp(t, 0) = X(t; τ0)

⎡⎣(I + B0)xp
0(0) + h0 +

t∫
τ0

X−1(s; τ0)g(s)ds + h0

⎤⎦ ,

xp
0(0) = −(I + B0)−1

⎡⎣h0 +
t0∫

τ0

X−1(s; τ0)g(s)ds

⎤⎦ .

Note that if ||a||∞ is sufficiently small, then xp
0(a) is well-defined, since (L0

a)−1(t0; τ0) → (I + B0)−1 by 
Lemma 3.1.

We then have the equality

xp(t, a) − xp(t, 0) = X(t; τ0)

⎡⎣ τ0+a0∫
τ0

X−1(s; τ0)
(
ϕh

0 (s, a0) −X(s; τ0)
1
a0

h0

)
ds

⎤⎦
+ X(t; τ0)

(
L0
a(t; τ0)x

p
0(a) − (I + B0)xp

0(0)
]
,

(14)

provided a0 < N− − τ0. A routine application of the triangle inequality, the (σ, w)-regularity condition and 
an argument similar to the proof of Lemma 3.1 can be used to show the integral converges to zero as a → 0. 
We also have L0

a(t; τ0) → I + B0 uniformly, so it suffices to prove the convergence xp
0(a) → xp

0(0).
We perform a similar bracketing, obtaining the formula

xp
0(a) − xp

0(0) = − (L0
a(t0; τ0) − I −B0)

t0∫
τ0

X−1(s; τ0)g(s)ds

−
τ0+a0∫
τ0

X−1(s; τ0)
[
L0
a(t0; τ0)ϕh

0 (s, a) − (I + B0)
1
a0

h0

]
ds,

which is valid if a0 < t0 − τ0. The first term clearly converges to zero, and the second one can be shown 
to converge to zero as well, in the same way as the convergence of the integral in equation (14). Therefore 
xp

0(a) → xp
0(0) as a → 0, from which we obtain the convergence xp

0(t, a) → xp
0(t, 0) as a → 0, uniformly for 

t ∈ N .
For the induction hypothesis, assume that if N ⊂= [N−, N+] ⊂ (τk−1, τk] for some k ≥ 0, then xp(t, a) →

xp(t, 0) as a → 0, uniformly for t ∈ N. Without loss of generality, we may assume that N+ = τk. Now if 
M = [M−, M+] ⊂ (τk, τk+1], we have

xp(t, a) = X(t; τk)Lk
a(t; τk)xp(τk, a)

+ X(t; τk)
t∫

τk

X−1(s; τk)(g(s) + ϕh
k(s, ak) · 1[Sk(a)])ds,

xp(t, 0) = X(t; τk)

⎡⎣(I + Bk)xp(τk, 0) + hk +
t∫

τk

X−1(s; τk)g(s)ds + hk

⎞⎠ .

Subtracting, we obtain

xp(t, a) − xp(t, 0) = X(t; τk)
[
Lk
a(t; τk)xp(τk, ak) − [E + Bk]xp(τk, 0)

]
+ X(t; τk)

⎡⎣ τk+ak∫
X−1(s; τk)ϕh

k(s, ak) −
1
ak

hk

⎤⎦ ,
τk
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provided ak < M−−τ0. By the induction hypothesis, we have xp(τk, a) → xp(τk, 0). By Lemma 3.1, we know 
that Lk

a(t; τk) → I + Bk. By the same reasoning as earlier, the integral term converges to zero. Therefore 
we conclude that xp(t, a) → xp(t, 0) on M . Hence, for any k, if N is a closed interval in (τk, τk+1], xp(t, a)
converges uniformly to xp(t, 0) as a → 0. This proves the theorem. �
Corollary 3.1.1. The conclusions of Theorem 3.1 hold if, for all k ∈ Z and ξ ∈ {B, h}, the relation

ϕξ
k(t, s) −

1
s
ξk = O(1) (15)

holds for t ∈ [τk, τk + s) as s → 0.

Proof. The choice of functions wξ
k(t, s) = eσks − 1 satisfies the conditions of the theorem and provides the 

asymptotic relation (15). �
Corollary 3.1.2. If ϕ is (σ, w)-regulated family of impulse extensions for (4) and

σ = max
k∈Z

τk+1∫
τk

||A(s)||ds (16)

is finite, the conclusions of Theorem 3.1 hold.

3.2. Convergence of Floquet multipliers for periodic systems with respect to the step sequence as a → 0

In this section, we assume that det(I+Bk) �= 0 for all k = 0, . . . , c −1. One consequence of Corollary 3.1.2
is that the Floquet multipliers of a periodic, homogeneous impulse extension equation, (5), induced by an 
(ϕ, a), will converge to those of the associated periodic, homogeneous impulsive differential equation, as 
a → 0. To make this precise, we first state two definitions.

Definition 3.2. The impulsive differential equation (1) is periodic with period T and cycle number c, or 
(T, c)-periodic, if A and f are T -periodic and c is the smallest natural number such that the shift identities 
τk+c = τk + T , Bk+c = Bk and hk+c = hk for all k ∈ Z.

Definition 3.3. An step sequence a ∈ S∗ is c-periodic if ak+c = ak for all k ∈ Z. Denote by S∗
c the set of 

c-periodic step sequences. If equation (4) is (T, c)-periodic, a family of impulse extensions, ϕ, is (T, c)-periodic
if the shift property

ϕα
k+c(t + T, a) = ϕα

k (t, a)

holds for a ∈ S∗
c , t ∈ Sk(a) and integers k, where α ∈ {B, h}.

The above definitions imply that a finite set of functions ϕ = {(ϕB
k , ϕ

h
k)} suffices to define a (T, c)-periodic 

family of impulse extensions. As such, we will say that a (T, c)-periodic family ϕ is (σ, w)-regulated if the 
asymptotic condition (10) is satisfied for indices k = 0, . . . , c − 1. As such, the sequences σ and w can also 
be taken as c-element indexed sets.

Analogous definitions to the above hold for homogeneous equations, for which the following corollary is 
relevant.

Corollary 3.1.3. Let the homogeneous impulsive equation (2) be (T, c)-periodic. Let ϕ be a (T, c)-periodic 
family of impulse extensions for (5), and suppose ϕ is exponentially (σ, w)-regulated in the mean with
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σ = σA ≡ max
k=0,...,c−1

τk+1∫
τk

||A(s)||ds. (17)

If Ma denotes the monodromy matrix of the impulse extension equation induced by (ϕ, a), and M0 is the 
monodromy matrix of the impulsive differential equation (2), we have Ma → M0 as a → 0, where the 
convergence is for a ∈ S∗

c . The result remains valid if σ = σF ≡ ||Λ||, where X(t) = Φ(t)eΛ(t−τ0) is the 
Floquet factorization of the homogeneous equation z′ = A(t)z, and Φ is T -periodic and satisfies Φ(τ0) = I.

Proof. By theorem from Church and Smith? [7], we have Ma = U(T + τ0; τ0, a), where U(t; τ0, a) is the 
matrix solution of (5) with impulse extension family ϕ and step sequence a ∈ S∗

c , satisfying U(τ0; τ0, a) = I. 
By Corollary 3.1.2, we have U(T +τ0; τ0, a) → U(T +τ0; τ0, 0) = M0 as a → 0. If σ = ||Λ||, we note that one 
has ||X(t)|| ≤ Keσ(t−τ0), where K = supt∈[τ0,τ0+T ], from which the result follows due to Lemma 3.1. �

Since the stability or instability of a homogeneous impulse extension equation can be inferred from 
the spectrum of the monodromy matrix [7], the above corollary implies that, unless the spectrum of M0
intersects the unit circle, the stability of the impulsive differential equation will match that of the impulse 
extension equation induced by (ϕ, a) provided ||a|| is small enough. We have the following corollary whose 
proof we omit, since it follows from the above results and Corollary 5.2 of [7].

Corollary 3.1.4. Let M0 denote the monodromy matrix of the (T, c)-periodic impulsive equation (2). If σ(M0)
does not intersect the unit circle, (2) is asymptotically stable if and only if, for all (σ, w)-regulated families 
of impulse extensions, ϕ, with σ as defined in Corollary 3.1.3, there exists δ > 0 such that, for all ||a|| < δ, 
the impulse extension equation for (2) induced by (ϕ, a) is stable for any t0 ∈ P(ϕ, a).

3.3. Asymptotic stability of aperiodic systems as the step sequence becomes small, a → 0

If the impulsive linear system (2) is stable but not asymptotically stable, then nothing can in general 
be said for the stability for associated impulse extension equations, (5). In fact, asymptotic stability is, in 
general, required, as the example from Section 3.4.2 illustrates.

The main result of this section rests on the following two lemmas.

Lemma 3.2. Let xn be a bounded real-valued sequence, and suppose the inequality 
∏sn+1

i=sn
xi ≤ C holds for all 

n ∈ N and some C ∈ (0, 1) and a monotone sequence of natural numbers, sn, with bounded finite difference, 
for which sn → ∞. Then there exists ε∗ > 0 such that, for all ε ∈ [0, ε∗), the inequality

sn+1∏
i=sn

(xi + ε) ≤ C(ε)

holds for some C(ε) ∈ (0, 1), for all n ∈ N.

Proof. Let Δsn ≤ D be the upper bound on the finite difference and |xn| ≤ X be an upper bound. For 
each n ∈ N and ε ∈ (0, 1), we have

sn+1∏
i=sn

(xi + ε) ≤
sn+1∏
i=sn

xi +
Δsn∑
i=1

(
Δsn
i

)
εiXΔsn+1−i +

sn+1∏
i=sn

ε

≤ C +
Δsn∑

εi max{X, 1}D+1 + εD+1
i=1
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≤ C +
D∑
i=1

iεmax{X, 1}D+1 + (D + 1)ε

= C + ε

(
1
2D(D + 1) max{X, 1}D+1 + D + 1

)
≡ C(ε).

Define ε∗ by

ε∗1 = 1 − C
1
2D(D + 1) max{X, 1}D+1 + D + 1

.

It follows that if 0 ≤ ε < min{ε∗1, 1} ≡ ε∗, then C(ε) < 1. �
Lemma 3.3. Let xn be a bounded, nonnegative, real-valued sequence, and suppose the inequality 

∏sn+1
i=sn

xi ≤ C

holds for all n ∈ N and some C ∈ (0, 1) and a monotone sequence of natural numbers, sn, with bounded 
finite difference, for which sn → ∞. The infinite product 

∏∞
i=0 xi diverges to zero.

Proof. Without loss of generality, suppose s0 = 0. As before, let Δsn ≤ D be the upper bound on the finite 
difference and |xn| ≤ X be an upper bound. By construction, there exists a subsequence of sn, denoted 
snm

, and a bounded sequence dm ∈ {0, 1, . . . , D − 1} such that m = snm
+ dm for all m ∈ N.

Consider |pm| =
∏m

i=0 |xi|, the modulus of the sequence of partial products. By the above representation 
of m ∈ N, we have

|pm| =
(snm∏

i=0
|xi|

) snm+dm∏
i=snm+1

|xi| ≤

⎛⎝ m∏
j=0

sj+1∏
i=sj

|xi|

⎞⎠ snm+dm∏
i=snm+1

|xi| ≤ Cm+1 max{1, X}D.

Since C < 1 and X and D are finite, we have |pm| → 0 as m → ∞. �
Theorem 3.2. Let a homogeneous impulsive system (2) be given. Define the sequences Ci and Di by

Di =
τi+1∫
τi

||A(s)||2 exp

⎛⎝−2
s∫

τi

||A(r)||dr

⎞⎠ ds, (18)

Ei = ||I + Bi||(1 +
√

(Δτi)Di). (19)

Consider the following conditions.

A1: The sequences Di and Ei are bounded.
A2: There exists a strictly increasing sequence of natural numbers sn with a bounded forward difference and 

a real number C ∈ (0, 1) such that, for all n ∈ N,

sn+1∏
i=sn

Ei ≤ C. (20)

A3: ϕ = {ϕk} is a family of impulse extensions for (2) that satisfies the asymptotic relations∣∣∣∣∣∣∣∣ϕk(t, a) −
1
a
Bk

∣∣∣∣∣∣∣∣ ≤ g(t, a),
∫

Sk(a)

h(s; τk) + 1
2h(s; τk)2ds ≤ G(a), h(s; τk) =

s∫
τk

g(r, a)dr

(21)

on Sk(a) as ||a||∞ → 0, for some function G satisfying G(a) → 0 as ||a||∞ → 0.
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A4: ϕ is (σ, w)-regulated in the mean with ||X−1(t; τk)|| ≤ eσk(t−τk) for t ∈ [τk, τk+1] for all k ∈ Z, where 
X(t; s) is the Cauchy matrix of x′ = A(t)x.

A5: det(I + Bk) �= 0 for all k ∈ Z.

System (2) is asymptotically stable, and, for all t0 ∈ R, there exists δ > 0 such that if ||a||∞ < δ, the impulse 
extension equation for (2) induced by (ϕ, a) is asymptotically stable at t0 and uniformly attracting on R. If 
N ⊆ P(ϕ, a) is bounded and separated from R \ P(ϕ, a), the previous result holds with uniform asymptotic 
stability on N .

Proof. Let t0 ∈ R. If ||a|| is sufficiently small, then, by definition, t0 ∈ P(ϕ, a), so we may assume t0 ∈
P(ϕ, a). We prove only the case of t0 = τ0; the other cases follow by similar reasoning (with the only 
significantly different cases being if t0 is in the interior of Sk(a) for some k; in this instance, formula (8)
is useful). By the generalized Gronwall’s inequality, any matrix solution, U(t), of (5), for which U(t0) = I, 
satisfies the inequality

|U(t)| ≤ |U(τk)|

⎛⎝Gk(t) +
t∫

τk

Gk(s)|A(s)| exp

⎛⎝−
s∫

t

|A(r)|dr

⎞⎠ ds

⎞⎠ ,

for t ∈ [τk, τk+1], where | · | denotes the standard Euclidean norm (or induced matrix norm),

Gk(t) =

∣∣∣∣∣∣I +
t∫

τk

ϕk(s, a)ds

∣∣∣∣∣∣ ,
and we identifying ϕk with ϕk ·1[Sk(a)]. By a simple inductive argument, we can see that, for t ∈ [τk, τk+1],

|U(t)| ≤ |U(τ0)|Fk(t)
k−1∏
i=0

⎛⎝Gi(τi+1) +
τi+1∫
τi

Gs(a)|A(s)| exp

⎛⎝−
s∫

τi

|A(r)|dr

⎞⎠ ds

⎞⎠ , (22)

Fk(t) = Gk(t) +
t∫

τk

Gk(s)|A(s)| exp

⎛⎝−
s∫

τk

|A(r)|dr

⎞⎠ ds. (23)

An overestimate of Fk(t) can be obtained via the Cauchy–Schwarz inequality, together with maximizing the 
integral by taking the upper limit as τk+1. We have

Fk(t) ≤ 1 + |Bk| +

⎛⎝ τk+1∫
τk

Gk(s)2ds

⎞⎠
1
2
⎛⎝ τk+1∫

τk

|A(s)|2 exp

⎛⎝−2
s∫

τk

|A(r)|dr

⎞⎠ ds

⎞⎠
1
2

︸ ︷︷ ︸
Dk

.

Since Gk(t) is constant and equal to |I + Bk| on [τk+ak
, τk+1], we can write

Fk(t) ≤ 1 + |Bk| +

⎛⎜⎝ ∫
Sk(a)

Gk(s)2ds + (Δτk − ak)|I + Bk|2

⎞⎟⎠
1
2

D
1
2
k . (24)

We now have the task of estimating the integral of G2
k on Sk(a). Using the asymptotic condition (21), we 

can write
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|ϕk(t)| ≤
1
ak

|Bk| + g(t, a)

provided ||a||∞ is sufficiently small, for all t ∈ Sk(a). It follows that

Gk(t) ≤ 1 +
s∫

τk

(
1
ak

|Bk| + g(s, a)
)
ds. (25)

Substituting the upper bound from (25) into (24), we obtain

Fk(t) ≤ 1 + |Bk| +

⎛⎜⎝ ∫
Sk(a)

1 + 2
s∫

τk

1
ak

|Bk| + g(r, a)dr +

⎡⎣ s∫
τk

1
ak

|Bk| + g(r, a)dr

⎤⎦2

ds

⎞⎟⎠
1
2

D
1
2
k

≤ 1 + |Bk| +

⎛⎜⎝ak

(
1 + |Bk| +

1
2ak|Bk|2

)
+ 2

∫
Sk(a)

s∫
τk

g(r, a)drds +
∫

Sk(a)

⎡⎣ s∫
τk

g(r, a)dr

⎤⎦2

ds

⎞⎟⎠
1
2

D
1
2
k

≤ 1 + |Bk| +
(
ak

(
1 + |Bk| +

1
2ak|Bk|2

)
+ 2G(a)

) 1
2

D
1
2
k ,

where in the last line we used the integral estimate in (21). By hypothesis, the sequence Dk is bounded. 
Boundedness of Dk implies the boundedness of Bk, from which we conclude

Fk(t) ≤ 1 + B +
(
ak

(
1 + B + 1

2akB
2
)

+ 2G(a)
) 1

2

D
1
2︸ ︷︷ ︸

Rk

for positive constants B and D with Di ≤ D. It follows that Rk → 0 as ||a||∞ → 0, uniformly for all k ∈ N.
By similar arguments, one can show that the bound

|U(t)| ≤ |U(τ0)|(1 + B + Rk)
k−1∏
i=0

|I + Bi| +
√

(Δτi − ai)|I + Bi|2 + R2
i ·

√
Di

holds for all t ∈ [τk, τk+1]. Since Rk → 0 uniformly for k ∈ N as ||a||∞ → 0 and the Di are independent of 
a, we can, for any ε > 0 small, ensure that

|U(t)| ≤ |U(τ0)|(1 + B + ε)
k−1∏
i=0

|I + Bi| +
√

(Δτi − ε)|I + Bi|2 + ε2 ·
√

Di

≤ |U(τ0)|(1 + B + ε)
k−1∏
i=0

|I + Bi|(1 +
√

(Δτi − ε)Di) + ε
√
D

≤ |U(τ0)|(1 + B + ε)
k−1∏
i=0

[
Ei + ε

√
D
]
,

for t ∈ [τk, τk+1] and all k ∈ N, by choosing ||a||∞ small enough. By Lemma 3.2 and Lemma 3.3, there exists 
some ε∗ > 0 such that the infinite product 

∏∞
i=0[Ei + ε

√
D] diverges to zero, provided ε < ε∗. It follows 

that |U(t)| → 0 when ε < ε∗, which is equivalent to ||a||∞ < δ for some sufficiently small δ. This also proves 
uniform attractivity on R; if x(t) and y(t) are two solutions defined for t ≥ t∗, then there exists τk ≥ t∗, 
and, by Lemma 4.3 of [7], we have x(t) − y(t) = U(t)U−1(τk)(x(τk) − y(τk)) → 0 as t → ∞.
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Next, since any solution of the initial-value problem x(t1) = x1 for (5) with t1 ∈ N can be written as 
x(t) = U(t)U−1(t1)x1, we obtain |x(t)| < η for all t ≥ t0 provided

|x1| <
η

supt≥t0 |U(t)| · |U−1(t1)|
,

where the supremum exists due to boundedness of U for t ≥ t0, and U−1(t1) exists since t1 ∈ N ⊂ P(ϕ, a); 
see [7] for more details. Therefore (5) is stable and attracting on N , and so is asymptotically stable.

If N is bounded and separated from R \ P, it follows that t ≡ inf N ∈ P(ϕ, a) and that K ≡
supt∈N |U−1(t)| and J ≡ supt∈N |U(t)| are finite (provided ||a|| is chosen sufficiently small so as to guarantee 
that τk + ak ∈ P(ϕ, a) for all τk ∈ N ; this can always be done because N is bounded and assumptions 
A4–A5 hold; see Lemma 3.1 and Theorem 4.2 of [7]). Then, replacing the bound above with |x1| < η/(JK), 
we obtain uniform stability on N . �
3.4. Counterexamples

Some of the previously stated results are, in a certain sense, optimal, while others are not. The coun-
terexamples of this section appear in, or are inspired by counterexamples appearing in [5].

3.4.1. (σ, w)-regularity is sufficient, but not necessary, for pointwise convergence of solutions
Consider the simple scalar equation

x′ = x, t �= k

Δx = −0.75x, t = k,
(26)

with k ∈ Z. This equation is periodic with period one, and its Floquet multiplier is μ1 = 1
4e, which is less 

than one. Consequently, the trivial solution is asymptotically stable.
Consider now a periodic impulse extension for (26):

x′ = x, t /∈ [k, k + a)

x′ = x + ϕ(t− k, a), t ∈ [k, k + a),
(27)

where ϕ(·, a) : [0, 1] → R (note that we are taking advantage of the fact that, since (26) is periodic with 
order one, a family of impulse extensions is generated by a single function). For fixed a ∈ (0, 1), the solution 
of (27) satisfying the initial condition x(0; a) = 1 is given by

x(t; a) = et

⎛⎝1 +
t∫

0

e−sϕ(s, a) · 1[0, a]ds

⎞⎠
for t ∈ [0, 1]. In particular, if we set g(s, a) = ϕ(s, a) − 1

a (−0.75), we have the equality

x(1; a) = e

⎛⎝1 +
a∫

0

e−t−0.75
a

dt +
a∫

0

e−tg(t, a)ds

⎞⎠ .

In the limit, as a → 0+, we have
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x(1; a) → 1
4e + e lim

a→0+

a∫
0

e−tg(t, a)dt

︸ ︷︷ ︸
R(g)

.

Therefore pointwise convergence of the solution at time t = 1 is equivalent to having R(g) = 0.
If g(t, a) = 1

ea−1 sin
( 2πt

a

)
, then computing R(g) gives

R(g) = lim
a→0+

a∫
0

e−t 1
ea − 1 sin

(
2πt
a

)
dt = lim

a→0+

2πae−a

a2 + 4π2 = 0.

For the linear impulsive equation (26), we have σA = 1, but this particular choice of g(t, a) does not 
satisfy the (1, w)-regularity requirement, (10), for any w. Consequently, ϕ(t, a) = 1

a (−0.75) + g(t, a) is not 
(1, w)-regulated, but we do see pointwise convergence of the solutions at t = 1. One can clearly see that this 
holds for all t ∈ [0, 1]; by periodicity, we obtain pointwise convergence everywhere.

On the other hand, if we choose

h(t, a) = a2 + 4π2

2πa(1 − e−a) sin
(

2πt
a

)
,

we obtain R(h) = 1, and h also fails the (1, w)-regularity requirement. It is also far more singular at a = 0
than is g, but this is beside the point. The usefulness of the definition of (σ, w)-regularity stems from the fact 
that it does require a specific functional form of the solution of any given differential equation to be applied, 
as illustrated by Corollary 3.1.1. In this counterexample, the general solution of the homogeneous equation 
is expressible analytically, allowing for a more precise condition on pointwise convergence of solutions to be 
stated.

3.4.2. Corollary 3.1.4 does not hold in the presence of unit Floquet multipliers of the impulsive system
Consider the “trivially impulsive” impulsive differential equation

dr

dt
= r sin(t), t �= 2kπ,

Δr = 0, t = 2kπ.
(28)

The Floquet multiplier of this system is μ0 = 1, and the fundamental matrix solution at t0 = 0 is X(t) =
exp(1 − cos(t)). Therefore Corollary 3.1.4 cannot be applied. Let us consider for any a ∈ (0, 2π), the family 
of impulse extensions

ϕ(t, a) = a5 sin
(

2πt
a

)
sin

(
1
a

)
with ϕ(t, 0) ≡ 0 for all t. We have ||ϕ(t, a)|| ≤ a5, so that ϕ is (σ, w)-regulated for any σ and w = (eσa−1)a5.

Note that

c(a) ≡
a∫

0

ecos(t) sin
(

2πt
a

)
dt > 0

for a < π. We argue this as follows. For 0 ≤ t < π, the function ecos(t) is positive and decreasing. Conse-
quently, ecos(t) > ecos(a/2) for t < a/2 and ecos(t) < ecos(a/2) for t > a/2. Then
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c(a) =
a/2∫
0

ecos(t) sin
(

2πt
a

)
dt +

a∫
a/2

ecos(t) sin
(

2πt
a

)
dt

>

a/2∫
0

min
[0,a/2]

ecos(t) sin
(

2πt
a

)
dt +

a∫
a/2

max
[a/2,a]

ecos(t) sin
(

2πt
a

)
dt

=
a/2∫
0

ecos(a/2) sin
(

2πt
a

)
dt +

a∫
a/2

ecos(a/2) sin
(

2πt
a

)
dt = 0.

Therefore c(a) > 0 for 0 < a < π. By [7], the Floquet multiplier of the impulse extension equation induced 
by (ϕ, a) is

μa = X(2π)

⎡⎣1 +
a∫

0

ecos(t)−1a5 sin
(

2πt
a

)
sin

(
1
a

)
dt

⎤⎦
= 1 + 1

e
a5 sin

(
1
a

)
c(a).

The function a5 sin
( 1
a

)
has roots at (2πn)−1 for all integers n, with derivative oscillating in sign from 

positive to negative. Consequently, a5 sin
( 1
a

)
assumes both positive and negative values on any interval 

(0, ε). We conclude that μa oscillates between greater than and less than 1 on any interval (0, ε) for ε < π; 
see Fig. 1 for a visualization. In terms of stability, this means that the stability of the impulsive system 
(28) cannot be used to predict the stability of an associated impulse extension equation, even if the step 
sequence is very small.

In conclusion, the conditions of Corollary 3.1.4 on the spectrum of the impulsive monodromy matrix, M0, 
cannot in general be weakened without assuming additional hypotheses on the family of impulse extensions.

4. The time-scale tolerance for linear, homogeneous impulsive differential equations

In this section, we introduce the notion of uniformly (σ, w)-regulated families of impulse extensions and the 
time-scale tolerance for linear, homogeneous impulsive differential equations. The definitions differ between 
periodic and aperiodic systems. Generally, we must deal with stable and unstable systems separately. First 
we have a basic definition. In this section, the word periodic will be synonymous with (T, c)-periodic.

Definition 4.1. Consider a homogeneous impulsive differential equation, (2). Let σ = {σk} be a sequence 
(c-element, if (2) is periodic) of positive real numbers and w = {wk} be a sequence (c-element, if (2) is 
periodic) of functions wk : [τk, τk+1] × S∗

c → R+ that are continuous and vanishing at (τk, 0) and such that 
wk(·, a) is integrable on Sk(a). A family of periodic impulse extensions, ϕ = {ϕk}, is uniformly exponentially 
(σ, w)-regulated in the mean or simply uniformly (σ, w)-regulated if the inequality∣∣∣∣∣∣∣∣ϕk(s, a) −

1
ak

Bk

∣∣∣∣∣∣∣∣ ≤ wk(s, a)
eσkak − 1 (29)

is satisfied for all s ∈ Sk(a) and k ∈ Z (or k = 0, . . . , c − 1, of (2) is periodic). A pair (σ, w) that satisfies 
the above criteria will be referred to as a uniform exponential regulator. If ϕ is uniformly (σ, w)-regulated, 
we will write ϕ ∈ (σ, w).
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Fig. 1. Plots of μa − 1 on four different scales, with 4000 sample points. Notice that oscillation is more easily seen on the smaller 
scales. This is to be expected, as the amplitude is essentially a fifth-order polynomial in a. This figure appears in [5].

Section 4.1 introduces the time-scale tolerance for asymptotically stable periodic systems, proving several 
elementary properties and providing an algorithm for its calculation. Section 4.2 extends the definition to 
unstable periodic systems. Finally, in Section 4.3, the definition of time-scale tolerance is extended to 
general, aperiodic systems via exponential dichotomies. For a physical interpretation of uniform exponential 
regulators, see Section 4.4.

4.1. The time-scale tolerance for periodic, asymptotically stable systems

We treat periodic, asymptotically stable homogeneous systems (2) first.

Definition 4.2. If R = (σ, w) is a uniform exponential regulator and a ∈ S∗
c , the (R, a)-pseudospectral radius 

of (2), denoted ρ(R, a), is defined by

ρ(R, a) = sup
ϕ∈R

ρM(ϕ, a), (30)

where M(ϕ, a) is the monodromy matrix of the impulse extension equation for (2) induced by (ϕ, a).

Definition 4.3. Suppose (2) is asymptotically stable. Let R be a uniform exponential regulator. If ϕ is a 
periodic family of impulse extensions for (1), let M(ϕ, a) denote the monodromy matrix of the impulse 
extension equation for (1) induced by (ϕ, a). The R-stable set, denoted Es(R), is defined as follows.

Es(R) = {a ∈ S∗
c : ρ(R, a) < 1} . (31)
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The R-time-scale tolerance is the number

Et(R) = sup{ε : ∃a ∈ Es(R), ||a|| = ε, Bε(0) ∩ S∗
c ⊆ Es(R)}. (32)

The time-scale tolerance is defined precisely so that we have the following elementary property, whose 
proof we omit.

Proposition 4.1. Given a uniform exponential regulator R = (σ, w), the time-scale tolerance behaves as a 
robust stability threshold for the impulsive system (1); if ||a|| < Et(R), then ρ(R, a) < 1. In other words, 
systems (1) the impulse extension equation (5) induced by (ϕ, a) are both stable, for all ϕ ∈ R.

As should be expected, if the regulator is not chosen wisely, the time-scale tolerance for the given regulator 
might be zero. This is not the case if one obeys the guidelines of, for example, Corollary 3.1.3.

Theorem 4.1. Suppose σ ∈ {σA, σF }. If Rσ = (σ, w) is a uniform exponential regulator and (2) is asymp-
totically stable (i.e. ρM0 < 1), then Et(Rσ) is nonzero and the map a 
→ ρ(Rσ, a) satisfies

lim
a→0

ρ(Rσ, a) = ρM0,

where the limit is for a ∈ S∗
c .

Proof. By the proof of Lemma 3.1, the bound∣∣∣∣∣∣∣
∫

Sk(a)

X−1(s; τk)εk(s; a)ds

∣∣∣∣∣∣∣ ≤
||wk(s, a)||Sk(a)

∞
σ

holds for k = 0, . . . , c − 1, for all ϕk = 1
ak

+ εk ∈ (σ, w). That is, the bound is independent of the choice 
of ϕ. Since we can write

M(ϕ, a) =
0∏

k=c−1

X(τk+1; τk)

⎛⎜⎝ ∫
Sk(a)

X−1(s; τk)εk(s, a)ds + 1
ak

∫
Sk(a)

I + X−1(s; τk)Bkds

⎞⎟⎠ ,

it follows that M(ϕ, a) converges to M0 as ||a|| → 0, uniformly in ϕ. Consequently, for all ε > 0, there exists 
δ > 0 such that, for ||a|| < δ, we have ||M(ϕ, a) −M0|| < ε for all ϕ ∈ (σ, w). From the continuity of the 
spectral radius map, X 
→ ρX, we conclude that, for all ε > 0, there exists δ > 0 such that, for ||a|| < δ, we 
have |ρM(ϕ, a) − ρM0| < ε for all ϕ ∈ (σ, w). In particular, we must have∣∣∣∣∣ sup

ϕ∈(σ,w)
ρM(ϕ, a) −M0

∣∣∣∣∣ = |ρ(Rσ, a) − ρM0| < ε.

We conclude that ρ(Rσ, a) → ρM0 as a → 0 in S∗
c .

If we choose ε = |1 − ρM0|, there exists δ > 0 such that

|ρ(Rσ, a) − ρM0| < |1 − ρ(M0)|,

provided ||a|| < δ. Consequently, ρ(Rσ, a) < 1 for this range of ||a|| < δ, indicating that the set Es(Rσ)
contains Bδ(0) ∩ S∗

c . It follows that the set
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{ε : ∃a ∈ Es(Rσ) : |a| = ε, Bε(0) ∩ S∗
c ⊆ Es(Rσ)}

is nonempty and contains δ > 0 and therefore has nonzero least upper bound. This least upper bound is 
precisely the time-scale tolerance, Et(Rσ). �

The function a 
→ ρ(Rσ, a) can be made continuous on the entirety of S∗
c , although the most natural 

assumption to impose requires restricting to sets of uniformly (σ, w)-regulated families of impulse extensions 
that also satisfy an equicontinuity-like condition. Such an assumption is too strong to impose for most 
practical problems; as such, the result is not very helpful and is omitted.

In practice, the time-scale tolerance is difficult to calculate. It is much easier to provide a method of 
finding a lower bound to the time-scale tolerance by taking advantage of its definition, which allows for 
approximation by pseudospectral radii. Recall that the ε-pseudospectral radius, ρεA, of a matrix A is 
defined by

ρεA = max{ρB : ||A−B|| ≤ ε}. (33)

For additional information about the pseudospectral radius, other pseudospectra and their computation, 
see [9,11,13]. In particular, we have the following proposition.

Proposition 4.2. Let a uniform exponential regulator R for the (T, c)-periodic impulsive differential equation 
(2) be given. Suppose the inequality

||M(ϕ, a) −M0|| ≤ n(a) (34)

is satisfied for all ϕ ∈ R and all a ∈ S∗
c , for some function n : S∗

c → R. The following are true.

1. ρ(R, a) ≤ ρn(a)M0 for all a ∈ S∗
c .

2. The following inclusion is valid:

Ês(R) ≡ {a ∈ S∗
c : ρn(a)M0 < 1} ⊆ Es(R).

3. Let h denote the unique solution of the equation ρhM0 = 1. The inequality

Êt(R) ≡ min{||a|| : n(a) = h, a ∈ S∗
c } ≤ Et(R)

is valid. If ||a|| < Êt(R), then ρM(ϕ, a) < 1 for all ϕ ∈ R.

Proof. By definition of the pseudospectral radius, we have

ρn(a)M0 = sup{ρ(Z) : Z ∈ R
n×n, ||Z −M0|| ≤ n(a)}

≥ sup{ρM(ϕ, a) : ϕ ∈ R, ||M(ϕ, a) −M0|| ≤ n(a)}

= sup{ρM(ϕ, a) : ϕ ∈ R} = ρ(R, a),

where the inequality follows by condition (34). The other two conclusions of the theorem follow directly 
from the above inequality. �

Construction of an appropriate function n : S∗
c → R that satisfies the condition of inequality (34) is 

important. Additional desirable properties include having n be continuous and strictly monotone increasing, 
for then the set Ês(R) becomes star-convex and Êt(R) can be seen as the minimum norm of all vectors lying 
in a compact hypersurface (c − 1)-dimensional hypersurface.
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Lemma 4.1. Let a uniform exponential regulator R be given, and suppose there exists a continuous, monotone 
nondecreasing function n : S∗

c → R satisfying inequality (34). Then Ês(R) is star-convex with basepoint 
0 ∈ S∗

c . If, in addition, n is strictly monotone increasing and extends to a continuous function n : S∗
c → R

and Et(R) < ∞, then the set

Ê+
s (R) = {a ∈ S∗

c : n(a) = h} (35)

is a compact hypersurface and Êt(R) = min{||a|| : a ∈ Ê+
s (R)}, where h denotes the unique solution of the 

equation ρhM0 = 1.

Proof. For simplicity of notation, we will write U = Ês(R). We first prove U is star-convex with base-
point 0. If a ∈ U , it follows that, for all t ∈ (0, 1), at least one index of ta must be strictly less than the 
corresponding index of a; for example, suppose (ta)k < ak. Since n is monotone nondecreasing, we obtain 
n(ta) ≤ n(a), which implies, by the monotonicity of the pseudospectral radius, that ρn(ta)M0 ≤ ρn(a)M0 < 1. 
Star-convexity of U follows.

Next we show that V = Ê+
s (R) is a compact hypersurface. Define a map Ψ : V → Ψ(V ) ⊂ R

c−1 by 
V (x1, x2, . . . , xc) = (x1, x2, . . . , xc−1). Since Ψ is a projection, it is continuous.

Now let y ∈ Ψ(V ). Since y ∈ Ψ(V ), there exists yc ∈ [0, Δτc−1] such that n(y, yc) = h. However, since 
n is strictly monotone increasing, we can have n(y, yc) = h = n(y, t) if and only if yc = t. Consequently, 
to each y ∈ Ψ(V ), we can associate a unique yc ∈ [0, Δτc−1] such that (y, yc) ∈ V . It follows that Ψ is 
invertible and Ψ−1(y) = (y, yc).

Next we show that Ψ−1 is continuous. Suppose Ψ−1 is discontinuous at some y ∈ Ψ(V ), so there exists 
some sequence yn → y with Ψ−1(yn) � Ψ−1(y). Since V is compact, it follows that there exists a subse-
quence, also denoted yn, such that Ψ−1(yn) → x �= Ψ−1(y). By compactness, x ∈ V , so there must be some 
z ∈ Ψ(V ) such that x = Ψ−1(z). Hence Ψ−1(yn) → Ψ−1(z). By continuity of Ψ, we have

yn = Ψ(Ψ−1(yn)) → Ψ(Ψ−1(z)) = z.

By uniqueness of limits, since yn → y and yn → z, we must have y = z. Therefore Ψ−1(y) = Ψ−1(z) = x, 
which is a contradiction to Ψ−1(y) �= x. We conclude that Ψ−1 is continuous and hence that Ψ is a 
homeomorphism. Therefore V is a compact hypersurface. �

In finding a function n satisfying inequality (34), the following combinatorial representation of ||M(ϕ, a) −
M0|| is helpful. The proof follows by an inductive argument and is omitted.

Lemma 4.2. For natural number z ≤ c − 1, let Θz denote the 
(
c
z

)
-element sequence of z-element subsets 

of the set {0, 1, . . . , c − 1}, let Θz(n) denote the nth element1 of this sequence and let Θz(n) denote its 
complement in {0, 1, . . . , c − 1}. For all periodic impulse extensions ϕ = {ϕk} for the periodic impulsive 
differential equation (2), we have the inequality

||M(ϕ, a) −M0|| ≤
c−1∑
k=0

(c
k

)∑
r=1

⎡⎣ ∏
j∈Θk(r)

||X(τj+1; τj)(E + Bj)||
∏

v∈Θk(r)

||X(τv+1; τv) [Cv + Pv]||

⎤⎦ , (36)

where Cv = Cv(ϕ, a) = 1
av

⎡⎢⎣ ∫
Sv(a)

(X−1(s; τv) − I)ds

⎤⎥⎦Bv, (37)

1 For a consistent ordering, note that it is always possible to uniquely order the sequence Θz in such a way that the nth element, 
Θz(n), satisfies ∑x∈Θ (n) x = n − 1 + z(z−1)

2 .

z
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Pv = Pv(ϕ, a) =
∫

Sv(a)

X−1(s; τv)
[
ϕv(s, a) −

1
av

Bv

]
ds. (38)

The bound appearing in (36) generally increases exponentially with c, since there are 2c − 1 terms in 
the sum. Moreover, the bound is not optimal, since it is obtained by repeated application of the triangle 
inequality. It is always possible to express M(ϕ, a) −M0 exactly; that is, without resorting to upper bounds. 
The following examples provide exact formulae for small values of c.

Example 4.2.1. If c = 1, we have the equality

M(ϕ, a) −M0 = X(T + τ0; τ0) [C0 + P0] . (39)

Example 4.2.2. If c = 2, we have the equality

M(ϕ, a) −M0 =X(τ2; τ1)
[
[C1 + P1]

(
X(τ1; τ0)

[
C0 + P0 + I + B0

])
+ (I + B1)X(τ1; τ0)[C0 + P0]

]
(40)

The bound appearing in (36) indicates that, to ensure the existence of an upper bound of the form (34)
that is continuous (and possibly monotone increasing) and defined on the closure of S∗

c , it is enough to 
ensure that each of the functions Cv and Pv of (36)–(37) each have continuous (and possibly monotone 
increasing) upper bounds with respect to the input a ∈ S∗

c , where the bound holds uniformly for all ϕ ∈ R, 
given a regulator R.

In the following, we outline an algorithm that can be used to compute Êt(R). To this end, we write the 
symbolic expression appearing on the right-hand side of (36) as a function of the functions Ck and Pk. The 
proof follows from the lemmas of this section and the above remark and is omitted.

n(a,C, P ) =
c−1∑
k=0

(c
k

)∑
r=1

⎡⎣ ∏
j∈Θk(r)

||X(τj+1; τj)(E + Bj)||
∏

v∈Θk(r)

||X(τv+1; τv) [Cv + Pv]||

⎤⎦ . (41)

Algorithm 4.1. Let R = (σ, w) be a uniform exponential regulator for the asymptotically stable 
(T, c)-periodic impulsive differential equation (2). Suppose σ is defined as in (17) and w satisfies the condi-
tions of Lemma 4.3.

1. Choose continuous (and possibly monotone increasing) functions C+ : S∗
c → R

c
+ and P+ : S∗

c → R
c
+

that satisfy the inequalities ||Ck(a)|| ≤ C+
k (a) and ||Pk(a)|| ≤ P+

k (a) for k = 0, . . . , c − 1.
2. Calculate the unique solution, h > 0, of the equation ρhM0 = 1.
3. Find the global minimizer, a∗, of the function f(a) = ||a||, subject to the constraints a ∈ S∗

c and 
n(a, C+, P+) − h = 0.

Then, ||a∗|| = Êt(R).

4.1.1. Choices of C+ and P+ guaranteeing monotonicity of n(a, C+, P+)
Under certain assumptions on the uniform exponential regulator, we can guarantee the existence of 

monotone increasing upper bounds for C and P .

Lemma 4.3. Let R = (σ, w) be an exponential regulator for the (T, c)-periodic equation (2), with σ as 
given in (17). Suppose the functions a 
→ sups∈Sk(a) ||wk(s, a)|| are continuous for each k = 0, . . . , c − 1. 
There exist functions C+ and P+, with k = 0, . . . , c − 1, mapping S∗

c → R
+, satisfying the inequalities 
k k
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||Ck(ϕ, a)|| ≤ C+
k (a) and ||Pk(ϕ, a)|| ≤ P+

k (a) for all a ∈ S∗
c and all ϕ ∈ R. The functions C+

k and P+
k are 

monotone nondecreasing on S∗
c , and if a < b with ak < bk, then C+

k (a) < C+
k (b) and P+

k (a) < P+
k (b).

Proof. We define the functions C+
k and P+

k as follows.

C+
k (a; sup) = sup

s∈Sk(a)
||(X−1(s; τk) − I)Bk||

P+
k (a; sup) = sup

s∈Sk(a)
wk(s, a).

(42)

C+
k is clearly monotone nondecreasing, as it is defined by the supremum of a continuous function on the set 

Sk(a), which satisfies the inclusion Sk(a) ⊆ Sk(b) whenever a ≤ b. The situation is similar for P+
k (a), due 

to the hypotheses on the functions wk. It also follows that P+
k (a) < P+

k (b) whenever a < b and ak < bk. 
The inequalities ||Ck(a)|| ≤ C+

k (a) and ||Pk(a)|| ≤ P+
k (a) follow from elementary integral inequalities and 

inequality (29). �
Note that the functions C+

k and P+
k described in the proof of Lemma 4.3 may not be optimal, in that 

there may be uniform bounds for Ck and Pk that are monotone increasing but smaller than the bounds 
provided by the lemma. For example, the following bounds hold uniformly for ϕ ∈ (σ, w):

Ck ≤ 1
ak

∫
Sk(a)

||(X−1(s; τk) − I)Bk||ds ≡ C+
k (A; Int), (43)

Pk ≤
∫

Sk(a)

eσ(τk−s)wk(s, a)
eσak − 1 ds ≡ P+

k (a; Int), (44)

Pk ≤
√√√√ 1

2σ · e2σak − 1
(eσak − 1)2

∫
Sk(a)

w2
k(s, a)ds ≡ P+

k (a; CS). (45)

Depending on the specific application, we could be more conservative. If the upper bounds are still monotone 
increasing in ak and continuous in a, they could be more suitable for the purposes of approximating the 
time-scale tolerance.

4.1.2. Discussion of Algorithm 4.1
In practice, implementing steps 1 and 2 Algorithm 4.1 do not pose much difficulty. Step 1 always has 

a worst-case choice to fall back on: C+
k (a; sup) and P+

k (a; sup). The bounds P+
k (a; Int) and P+

k (a; CS) of 
(44)–(45) could be computed exactly for specific choices of uniform regulators R = (σ, w). There is also 
the upper bound for Ck provided by C+

k (a; Int) of (43). Note that all of these bounds can be ensured to 
be continuous (even if they are not monotone increasing) by an appropriate choice of uniform exponential 
regulator. If one wishes for the bounds to be monotone increasing, it is worth mentioning that all of the 
suggested bounds for P can be made monotone increasing by an appropriate choice of exponential regulator, 
and the monotonicity of the bounds for C could be tested statistically, if needed.

We can also choose an optimal bound by simply taking the minimum of any particular set of bounds. 
For example, if one chooses

P+
k (a) = min{P+

k (a; sup), P+
k (a; Int), P+

k (a; CS)},

C+
k (a) = min{C+

k (a; sup), C+
k (a; Int)},

(46)
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the resulting functions P+ and C+ will be continuous (they are finite minimums of continuous functions) and 
increasing, provided each estimate is also increasing (since a minimum of increasing functions is increasing). 
By construction, they provide tighter estimates than each individual bound.

The second step of the algorithm involves solving the equation ρhM0 = 1 for h > 0. Since h ∈ R and 
h 
→ ρhM0 is monotone nondecreasing (but typically nonsmooth), the bisection method is applicable.

The third step will typically be the most computationally expensive. While S∗
c is convex and the objective 

f(a) = ||a|| is convex, the other constraint, c(a) = 0 with c(a) = n(a, C+, P+) − h, generally destroys the 
convexity of the domain; the resulting set, Ês(R), could have no “nice” structure, or it could be star-convex, 
by Lemma 4.1. We comment on a few methods now.

Monotonic optimization by reverse polyblock approximation Suppose n(a) = n(a, CP , P+) is monotone. 
The objective, a 
→ ||a||, is also monotone, and the domain, S∗

c , is convex. This problem can therefore 
be solved by reverse polyblock approximation as follows. Following [20], define G ≡ S∗

c ⊂ [0, b], with 
b = max Δτk; G is compact and normal with nonempty interior. If we take H ≡ R

n
+ \ Ês(R)◦, then H is 

closed, and its complement in Rn
+ is Ês(R)◦, which is a normal set since Ês(R)◦ is defined by 0 ≤ n(a) < h

and n is increasing. Therefore H is closed and reverse normal. By construction, G ∩H contains the level 
set {a ∈ S∗

c : n(a) = h} = Ê+
s (R).

Now define the objective function f : [0, b] → R+ by f(a) = ||a||. By Proposition 11 of [20], any minimizer 
of the problem

min{f(a) : a ∈ G ∩H} (47)

must be an element of ∂−H = Ê+
s (R). Consequently, a global minimizer a∗ of (47) satisfies n(a∗) − h = 0

and minimizes a 
→ ||a|| over the level set Ê+
s (R). By Proposition 4.2, a global minimizer a∗ of problem (47)

satisfies ||a∗|| = Êt(R). The reverse polyblock approximation algorithm, described in [20], finds an ε-optimal 
solution, which, for our problem, means that the approximate minimizer a∗ satisfies the inequality

Êt(R, ε) ≡ ||a∗|| − ε ≤ Êt(R).

However, since a∗ is a feasible solution, we must have ||a∗|| ≥ Êt(R). Using this fact and rearranging the 
above inequality, we obtain

0 ≤ Êt(R) − Êt(R, ε) ≤ ε. (48)

Therefore the reverse polyblock approximation algorithm generates an ε-underestimate of Êt(R), which we 
call Êt(R, ε).

Lower approximation by piecewise-constant functions on a grid When c = 1 and n(a) is continuous and 
monotone strictly increasing, the problem is trivial to solve, since all that is needed is to solve the equa-
tion n(a) = h for scalar a ∈ [0, Δτ0]. This can be accomplished by the bisection method, or possibly a 
quasi-Newton method. Moreover, there is a unique solution when n is monotone strictly increasing. If n is 
only monotone nondecreasing, a quasi-Newton method to find a feasible solution followed by a some sort of 
bracketing method should be sufficient to bracket the minimal solution to any desired level of precision.

When c = 2 and n(a) is continuous and strictly monotone increasing, the hypersurface Ê+
s (R) is one-

dimensional. If [0, Δτ0] is discretized into a grid with N cells, [0, a1
0], [a1

0, a
2
0], . . . , [aN−1

0 , aN0 ], Ê+
s (R) can be 

parameterized along the vertices of the cells by solving the equation n(am0 , am1 ) = h for am1 ∈ [0, Δτ1],2 for 

2 If no solution exists, set am
1 = Δτ1.
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Fig. 2. Plot of a (theoretical, for illustrative purposes only) hypersurface, n(a) = h, with n continuous and monotone strictly 
increasing, and c = 2 impulses per period. The piecewise-constant under-approximation, p(a0), generated by a grid with 9 cells, 
is plotted (thin dotted black line), and the point that generates the lower estimate for the time-scale tolerance is indicated by a 
star. All points a = (a0, a1) within the interior of the disc (grey line) with radius r = ||a(9)|| < Êt(R) (notice that the inequality 
is strict because the disc does not intersect the hypersurface) would satisfy the inequality ρ(R, a) < 1. Also, one can see that 
the upper bound provided by (49)–(50) is not very conservative in this case; the bound can certainly be improved, although the 
notation gets cumbersome.

each vertex am0 . A piecewise-constant under-approximation of the parameterization can then be constructed 
as follows.

p(a0) =
{

am+1
1 , a0 ∈ [am0 , am+1

0 ),

aN1 , a0 = aN0 .

The function p is indeed an under-approximation, since, for a0 ∈ [am0 , am+1
0 ), we have n(a0, p(a0)) ≤

n(am+1
0 , am+1

1 ) = h, and n(aN0 , p(aN0 )) = h. If one calculates

a(N) = argmin{||a|| : a = (am0 , am+1
1 ) : m = 1, . . . , N − 1},

then, by construction, ||a(N)|| ≤ Êt(R). In particular, one can show that the inequality

0 ≤ Êt(R) − ||a(N)|| ≤
(

Δτ2
1

N2 + max |Δam1 |2
) 1

2

(49)

holds. Since n is continuous, the maximum term becomes arbitrarily small as N → ∞. Therefore, to obtain 
the precision desired, one needs only iterate the procedure on N , successively subdividing intervals, until 
the right-hand side is smaller than the desired tolerance. See Fig. 2 for a visualization.

The above approach can be similarly applied to problems with cycle number c > 2, with slight modifi-
cations. If C = [x0, y0] × · · · × [xc−1, yc−1] ⊂ R

c is a cell, we denote C− = [x0, y0) × · · · × [xc−1, yc−1) and

Cl = (x0, . . . , xc−1), Cr = (y0, . . . , yc−1).
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The modification is that [0, Δτ0] × [0, Δτc−1] is discretized into cells Cm, m = 1, . . . , N2c−1 , and the function 
p is defined in such a way that

p(C−
m) = arg{ac−1 : n(Cr

m, ac−1) = h}.

The rest of the algorithm is essentially unchanged; a(N) is the argument that minimizes ||a|| over the set 
of a = (Cl

m, p(C−
m)). The resulting bound satisfies the inequality

0 ≤ Ẽt(R) − ||a(N)|| ≤
(

(c− 1) max Δτ2
i

N2 + max |p(C−
m) − p(πC−

m)|2
) 1

2

, (50)

where π is a partial function on half-open cells that maps a given cell to the one that is upper diagonal to 
it; the map is defined by the equivalence

π(C−
m) = C−

j ⇐⇒ Cr
m = Cl

j .

Note that the maximum is only taken over those cells where π(C−
m) exists (these are the cells for which 

Cr
m is not an element of the boundary of [0, Δτ0] × . . . [Δτc−1]). Again, the above can be iterated, taking 

N as large as needed, since the maximum term consists of a difference between evaluations of a continuous 
function defined at opposing vertices of a hypercube of side length 1

N , which will become arbitrarily small 
as N → 0. The iterations require more recursion than in the case c = 2, however.

4.2. The time-scale tolerance for unstable periodic systems

The time-scale tolerance can be defined for unstable systems as well, provided certain conditions on the 
center subspace of the iterated map x 
→ M0x hold. If there is a center subspace, it is possible for the spectral 
radius to oscillate between greater than or less than one on any time scale, as Example 3.4.2 demonstrates. 
This defect makes it generally impossible to study time-scale tolerances in systems for which there is a 
center subspace but no unstable subspace. However, if there is an unstable subspace, such defects do not 
cause issues. The analysis of this section is inspired by a short discussion appearing in [4].

Definition 4.4. If R = (σ, w) is a uniform exponential regulator and a ∈ S∗
c , the (R, a)-lower pseudospectral 

radius of (2), denoted ρ−(R, a), is defined by

ρ−(R, a) = inf
ϕ∈R

ρM(ϕ, a). (51)

The following proposition appears in [4].

Proposition 4.3. Let R be a uniform exponential regulator for (2). Suppose ||M(ϕ, a) −M0|| ≤ n(a) for some 
continuous function n(a) satisfying n(0) = 0, for all a ∈ S∗

c . The following inequality holds.

ρ−(R, a) ≥ ρ−n(a)M0 ≡ inf{ρM : ||M −M0|| ≤ n(a)}. (52)

Proof. We follow the string of inequalities

inf
ϕ∈R

ρM(ϕ, a) ≥ inf
{
ρM : ||M −M0|| ≤ sup

ϕ∈R
||M(ϕ, a) −M0||

}
= inf{ρM : ||M −M0|| ≤ inf{x : ||M(ϕ, a) −M0|| ≤ x, ∀ϕ ∈ R}}
≥ inf{ρM : ||M −M0|| ≤ n(a)} = ρ−n(a)M0,

thereby obtaining the result claimed. �



640 K.E.M. Church, R. Smith? / J. Math. Anal. Appl. 457 (2018) 616–644
Definition 4.5. Suppose the (T, c)-periodic impulsive system (2) has no Floquet multipliers on the unit circle 
and is unstable. If R is a uniform exponential regulator, the R-unstable set, denoted Eu(R), is defined as 
follows.

Eu(R) =
{
a ∈ S∗

c : ρ−(R, a) > 1
}
. (53)

The R-time-scale tolerance is the number

Et(R) = sup{ε : ∃a ∈ Eu(R), ||a|| = ε, Bε(0) ∩ S∗
c ⊆ Eu(R)}; (54)

the time-scale tolerance is defined as for stable systems.

The proof of the following proposition is essentially the same as the analogous proof of Theorem 4.1, and 
is omitted.

Proposition 4.4. Let M0 denote the monodromy matrix for the (T, c)-periodic equation (2). Let R = (σ, w)
be a uniform exponential regulator with σ ∈ {σA, σF }. Suppose ρM0 > 1.

1. The R-time-scale tolerance exists.
2. lima→0 ρ

−(R, a) = ρM0, where the limit is for a ∈ S∗
c .

Once again, the time-scale tolerance behaves as a robust (in)stability threshold. If ||a|| < Et(R), then 
the impulse extension equation induced by (ϕ, a) will be unstable for all ϕ ∈ R. The following corollary is 
obvious and is not proven.

Corollary 4.1.1. Suppose the conditions of Proposition 4.3 hold. Let Êt(R) be the solution of the optimization 
problem

Êt(R) ≡ sup{||a|| : a ∈ B||a||(0) ⊂ Êu(R)}, (55)

with

Êu(R) = {a ∈ S∗
c : ρ−n(a)M0 > 1}.

Then Et(R) ≥ Êt(R), where Et(R) is the R-time-scale tolerance for the (T, c)-periodic impulsive system (2)
satisfying ρM0 > 1. If n is monotone strictly increasing and extends continuously to S∗

c , then

Êt(R) = min{||a|| : ρ−n(a)M0 = 1, a ∈ S∗
c }. (56)

The above problem is not as well-posed as the associated problem for asymptotically stable systems 
because the map

M 
→ ρ−ε M = min{ρN : ||N −M || ≤ ε}

is not as well-behaved from a numerical perspective, and the computation of this map is an essential step in 
calculating Êt(R) as in (56). For background on the problem of minimizing the spectral radius, one should 
consult the works of, for example, Burke, Lewis and Overton [3], Overton and Womersley [16] and Nesterov 
and Protasov [15]. For our purposes, however, it is not difficult to see that the map ε 
→ ρ−ε M is monotone 
decreasing (although not strictly decreasing, since ρ−ε M = 0 for ε ≥ ||M ||, for example) and continuous 
for each fixed M , so the composition a 
→ ρ− M0 will generally be continuous and monotone decreasing, 
n(a)
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provided n is continuous and increasing. As such, assuming ρ−n(a)M0 can be computed, Algorithm 4.1 and 
subsequent discussions can be adapted to the present case of unstable impulsive systems. We will not delve 
further into the problem at this time.

4.3. The time-scale tolerance for general homogeneous linear systems

If (2) is not periodic, one can abstractly define the time-scale tolerance via exponential dichotomies. For 
brevity, in this section, the symbol E(ϕ, a) will refer to the impulse extension equation for (2) induced by 
(ϕ, a). In this section, without loss of generality, we take τ0 = 0.

Definition 4.6. The impulse extension equation E(ϕ, a) possesses an exponential dichotomy if there exists a 
projector P such that the fundamental matrix solution of E(ϕ, a), denoted U(t) and satisfying U(0) = I, 
satisfies the inequalities

||U(t)PU−1(s)|| ≤ Ke−α(t−s) s ≤ t < ∞ (57)

||U(t)(I − P )U−1(s)|| ≤ Le−β(s−t) s ≥ t > −∞ (58)

for positive constants α, β, K, L, whenever s ∈ P(ϕ, a). In this case, we will write E(ϕ, a) ∼ P .

Definition 4.7. Suppose (2) possesses an exponential dichotomy with projector P0. Let a uniform exponential 
regulator R = (σ, w) for (2) be given. The R-stable and R-unstable sets are defined as follows.

Es(R) = {a ∈ S∗ : ∀ϕ ∈ R, ∃P : E(ϕ, a) ∼ P, rank(P ) = n} (59)

Eu(R) = {a ∈ S∗ : ∀ϕ ∈ R, ∃P : E(ϕ, a) ∼ P, rank(I − P ) ≥ 1} . (60)

By construction, Es(R) and Eu(R) are disjoint.

Definition 4.8. Let R be a uniform exponential regulator for (2). The R-time-scale tolerance is the number

Et(R) = sup{||a|| : a ∈ B||a||(0) ∩ S∗ ⊆ Es(R) ∨ Eu(R)} (61)

provided it is positive, where the notation X ⊆ Y ∨ Z is understood as X ⊆ Y ∨X ⊆ Z.

With the above definition, we clearly see that the defining property of the R-time-scale tolerance has been 
maintained: if ||a||∞ < Et(R), then, for all ϕ ∈ R, the stable subspace of E(ϕ, a) is n-dimensional (recall 
the phase space is Rn) if and only if the same is true for the stable subspace of the impulsive differential 
equation (2). That is, E(ϕ, a) and (2) have the same stability classification. Therefore the above definition 
generalizes the associated definitions for periodic equations. Study of the existence of the above generalized 
time-scale tolerance will not be considered in this article.

4.3.1. A consequence of Theorem 3.2
Theorem 3.2 suggests a method by which a time-scale tolerance can be defined for certain classes of asymp-

totically stable aperiodic systems, independent of whether or not they possess exponential dichotomies.

Theorem 4.2. Let R denote a set of impulse extensions for (2) such that, for all ϕ ∈ R, conditions A3 
and A4 of Theorem 3.2 hold for all a ∈ S∗, with uniform (σ, w)-regularity in the mean. Assume also that 
conditions A1, A2 and A5 of Theorem 3.2 are satisfied. For all t0 ∈ R, there exists δ(R) > 0 such that, for 
all ϕ ∈ R, the impulse extension equation E(ϕ, a) is asymptotically stable at t0 and uniformly attracting on 
R whenever ||a||∞ < δ(R). If Et(R) exists, then Et(R) ≤ δ(R).
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Proof. If one examines the proof of Theorem 3.2, one will notice that the functional representation of ϕ
is never used; only the upper bounds in (20) are needed. Since we have removed the restriction that the 
bounds are only satisfied in the limit as a → 0, the conclusions of the theorem hold uniformly for all ϕ ∈ R. 
It follows that there exists δ > 0 such that, if ||a||∞ < δ, E(ϕ, a) is asymptotically stable on P(ϕ, a), for all 
ϕ ∈ R. Taking the supremum of all such δ > 0 produces δ(R) > 0.

Suppose Et(R) exists. We must have BEt(R)(0) ∩ S∗ ⊆ Es(R); otherwise, there would exist ϕ ∈ R and 
arbitrarily small a ∈ S∗ with E(ϕ, a) ∼ P such that rank(I−P ) ≥ 1, which would contradict the asymptotic 
stability of E(ϕ, a) for ||a||∞ < δ(R). But this implies that, for all a ∈ S∗ with ||a|| < Et(R), we have 
E(ϕ, a) ∼ P with rank(P ) = n, which implies E(ϕ, a) is asymptotically stable. By definition of δ(R), we 
obtain Et(R) ≤ δ(R). �

As the above theorem demonstrates, under certain conditions, we can define a time-scale tolerance that 
is, to a certain extent, more optimal than the one provided by Definition 4.7, without resorting to discussions 
of exponential dichotomies.

4.4. A physical interpretation of uniform exponential regulators

In practice, to compute the time-scale tolerance for a given impulsive differential equation, one must first 
select a uniform exponential regulator, R = (σ, w). There is not much choice over the sequence σ, since the 
time-scale tolerance may not exist if we do not have σ ∈ {σA, σF }. However, there is much freedom in the 
choice of w. Recall that the uniform exponential regulator is characterized by inequality (29), which we can 
write more suggestively as ∣∣∣∣∣∣ϕk(t, a) − ϕk(t, a)

∣∣∣∣∣∣ ≤ wk(t, a)
eσkak − 1 ≡ δ(t, a, wk),

where ϕk(t, a) is the mean of ϕk(t, a) on Sk(a). As such, the quantity on the right of the inequality represents 
a functional upper bound for the deviation of ϕk from the mean, on the interval in which the vector field 
(2) calls it.

For homogeneous systems, we have a fairly simple characterization. If, on the interval Sk(a), the system 
evolves according to the differential equation

x′ = A(t)x + ϕk(t, a)x(τk),

then the solution satisfies

x(t) = x(t;xk) + err(t, R)xk,

where x(t; xk) is the solution of the IVP

x′ = A(t)x + 1
ak

Bkx(τk), x(τk) = xk

and err(t, R) satisfies the inequality

||err(t, R)|| ≤
t∫

τk

||X−1(s)||wk(s, a)
eσkak − 1 ds,

where X ′ = A(t)X and X(τk) = I. Interpreting x(t; xk) as the solution of the “impulsively averaged” impulse 
extension equation, the difference between the true solution, x(t; xk), and the solution of the averaged 
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equation, x(t; xk), is at most ||err(t, R)||xk in norm. When σ = {σk} is chosen properly (see Theorem 3.1
and associated corollaries), the error tends to zero as a → 0.

From the point of view of applications, this suggests that if ϕk represents some sort of external forcing 
to the system being modeled, and the forcing acts as a constant under optimal conditions on the duration 
of the forcing, then one would expect to have δ(t, a, wk) ≈ 0 for t ∈ Sk(a) whenever ak ≥ rk and [rk, Δτk]
is the optimal operational range of the forcing function.

If the forcing function is subject to increased error in operation if the duration of the control is less 
than the minimum of its optimal operational range, one should further expect to have ak 
→ δ(t, ak, wk) be 
strictly decreasing.

If the error associated to the forcing function is ultimately bounded, one would propose

lim sup
ak→0+

||δ(t, ak, wk)||Sk(a)

to be finite. On the other hand, if the error of the forcing function is unbounded or, for physical reasons, 
some range ak ∈ [τk, τk + qk] of durations of impulse effect is not physically attainable (e.g. the forcing 
function represents the effect of a physical component on the system and is bound by physical constraints), 
then it would be expected that the above limit superior be infinity.

As such, for different applications, a different choice of w might be more appropriate. One family of 
functions for which the above limit superior is infinity is given by

wk(a) = Ck(t, ak) · a1/γ
k ,

where Ck(t, ak) is a continuous and positive on [τk, τk+1] × [0, Δτk] and γ > 1. Choosing Ck and γ carefully, 
one can ensure the desired monotonicity properties of δ.

5. Discussion

In Section 3, families of (σ, w)-regulated impulse extensions are introduced. It was shown (Theorem 3.1) 
that the solutions of the impulse extension equation for (1) induced by (ϕ, a) converge pointwise to the 
associated solution of the impulsive differential equation as ||a||∞ → 0, provided ϕ is (σ, w)-regulated. 
Uniform convergence is also shown to be possible on particular bounded sets. In all cases, the sequence σ
must be chosen carefully, but, under certain conditions (Corollary 3.1.2), it can be chosen to be a constant.

Following this, we specialized to periodic equations. Corollary 3.1.3 demonstrated that Floquet multipliers 
converge to those of the associated impulsive system as the step sequence a becomes small, provided the 
impulse extension equation is generated by a (σ, w)-regulated family of impulse extensions. Finally, we 
provided a constructive result for general, aperiodic systems (Theorem 3.2), where the proof was based on 
Gronwall’s inequality and estimations of infinite products.

Section 4 defined the time-scale tolerance, first for asymptotically stable periodic systems (Section 4.1), 
where an algorithm was provided to compute a lower bound (Algorithm 4.1). This algorithm was discussed 
in Section 4.1.2, where two methods were suggested to solve a particular optimization problem that is needed 
to implement the algorithm.

Next, the time-scale tolerance was defined for unstable periodic impulse systems (Section 4.2) for which 
the monodromy matrix, M0, satisfied ρM0 > 1. This problem is more difficult to solve than for asymp-
totically stable systems, although, assuming one can efficiently minimize the spectral radius map over a 
compact convex set, Algorithm 4.1 could be adapted to the unstable case.

Finally, we defined the time-scale tolerance for general homogeneous linear systems (Section 4.3) by 
means of exponential dichotomies. The resulting time-scale tolerance exhibits the same “stability threshold” 
properties as the analogous specific definitions for periodic systems. Using Theorem 3.2, we proved that, 
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under certain circumstances, one can define a stability threshold for asymptotically stable impulsive systems 
independently of exponential dichotomies (Theorem 4.2), and the threshold is, in a particular sense, “better” 
than the time-scale tolerance defined by exponential dichotomies.

All time-scale tolerances are defined with respect to a uniform exponential regulator (Definition 4.1). In 
Section 4.4, we discussed how uniform exponential regulators should be selected in applications, and their 
physical interpretation.
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