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Abstract. Guinea Worm Disease is one of humanity’s oldest
diseases. Parasites that live in the drinking water are ingested,
eventually producing a worm that bursts from the extremities
(usually the foot) and deposits larvae in the drinking water.
Although the disease does not kill its host, it is severely disabling
and has an incubation period of approximately 12 months.
However, we stand on the brink of eradicating Guinea Worm
Disease, thanks to a combination of education (teaching people not
to put their infected limbs into the drinking water for relief),
filtration of infected water (before human consumption) and
chlorination (which kills the parasite in the water). Here, we
develop the first mathematical model of this disease. We use
impulsive differential equations to evaluate the effectiveness of
chlorination. We derive thresholds for the frequency of both fixed
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and non-fixed chlorination. We then use Latin Hypercube Sampling to determine the
practical effectiveness of our three control parameters. We show that, despite the
theoretical potential of chlorination to complete eradication of the disease, education
is far more effective. While a combination of intervention techniques is most
desirable, eradication efforts must focus on educating infected individuals in the
remaining endemic countries of the world.

1. Introduction

Guinea Worm Disease (GWD), also known as Dracunculiasis, is one of
humanity’s ancient scourges [31]. Individuals are infected by drinking water
contaminated with water fleas, which act as an intermediate host and carrier
of nematode larvae [24]. These nematodes affect the subcutaneous tissue as
the adult female migrates through the human body, generally residing in the
foot. If left untreated, the nematode will eject larvae when exposed to fresh
water, which the host will do to alleviate the burning and itching caused by
the worm; the lesion may also acquire a secondary infection if improperly
cared for [19, 24]. The pain from GWD can be disabling, which is of great
concern as outbreaks tend to occur at times of agricultural importance [21, 24].

Europeans first saw the disease on the Guinea Coast of West Africa in
the 17th century [20]. During the 19th and 20th centuries, it was common in
much of southern Asia, and in North, West and East Africa. It is estimated
that in the 1950s there were 50 million cases [34]. In 1986, the Carter Center,
the national Guinea worm eradication programs, the Center for Disease
Control and Prevention (CDC), UNICEF and the World Health Organization
(WHO) began a concerted eradication program [34]. In 1989, there were
892,000 reported cases [38]. In 1999, there were an estimated 96,000 cases
in 13 countries (none of which were in Asia) [34]. In 2009, fewer than 3,500
cases of the disease remained, in four African countries: Sudan, Ghana, Mali
and Ethiopia [12]. If successfully eradicated, it will be the first parasitic
disease to be eradicated and also the first disease to be eradicated using
behaviour changes alone [5].

GWD is the only disease to be solely transmitted via drinking water [34].
When larvae are released into the water, microscopic copepods (water fleas)
swallow the larvae. As people drink the water, the copepods are digested by
the human digestive system, but the larvae remain intact, resisting the acids
in the stomach, and find their way into the small intestine and penetrate it to
enter the body cavity. The female larvae grow into full-size adults,
approximately 60 to 100 centimetres in length and 0.1 to 0.2 centimetres in
width. This takes approcimately 10 to 14 months. These worms then migrate
to extremities such as the feet, although they can be found elsewhere in the
body. A blister appears at the location where the worm will try to break
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through. This blister will cause a painful burning sensation and will burst
after 24 to 72 hours.

Submerging the wound in water will bring relief but also releases a milky
white liquid into the water which contains hundreds of thousands of larvae,
contaminating the water supply and restarting the cycle. See Figure 1. There
is no vaccine or curative drug and infected individuals do not develop
immunity. However, the worm can be removed by surgery or by physically
pulling the worm out, often by wrapping it around a stick. This process can
take up to two months to complete, as worms can grow up to a metre in
length and only 1-2cm can be removed per day [23, 34]. Indeed, the medical
symbol of the Staff of Asclepius is based upon the stick used to extract
Guinea worms in ancient times [27].

Prevention includes drinking water from underground sources such as a
borehole or hand-dug wells, although this is not always possible. Infected
individuals should be prevented from submerging wounds in drinking water.
Cloth filters that fit over pots and pans can be distributed to local villages,
whereas nomadic people have received personal-use cloths fitted over pipes
that can be worn around the neck. Boiling water 1s also effective, where possible
[10]. Alternatively, chemical larvicides such as ABATE can be added to stagnant
water supplies [34].
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Figure 1. The life cycle of Guinea worm disease. Image copyright the United States
Centers for Disease Control and Prevention.
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To the best of our knowledge, this is the first mathematical model of
GWD [25]. Our aim in this paper is to examine the theoretical likelihood of
eradication of the disease using existing intervention techniques in resource-
constrained settings.

2. The model

Denote susceptible individuals by S, exposed individuals by E and
infected individuals by /. The number of larvae in the water is denoted W.
The human birth rate is 11, the infection rate is S, the rate of worm emergence
i1s a, the recovery rate i1s # and the death rate is u. Infected individuals
produce new larvae at rate 7 and the larvae are naturally cleared from the
water at rate uy. Although water fleas act as an intermediate host, carrying
the nematode until human digestion, we conflate the larvae and the fleas, in
order to keep the model tractable.

Interventions include filtration, education or chlorination of the water
supply. Although “education” is a complex term, encompassing a multitude
of interventions, we consider education to refer directly to teaching people
not to put their infected limbs in the water supply, in line with established
behaviour-change programs for tackling GWD. Thus, we consider that an
increase in education will have the direct effect of reducing the parasite birth
rate, hence reducing -~ . Likewise, by “filtration”, we mean a method that

reduces the ability of the parasite to infect a human host, thus reducing p.
Chlorination has the effect of increasing the death rate of the parasite, thus
increasing .

However, continuous chlorination is neither possible nor desirable, so we
shall assume chlorination occurs at distinct (not necessarily fixed) times #. At
these times, the number of larvae in the water are reduced by some
proportion 7. This results in a system of impulsive differential equations [6, 7,
8, 26]. This is related to the use of pulse vaccinations [1], seasonal skipping
in recurrent epidemics [39], antiretroviral drug treatment [29] and birth pulses
in animals [33].

Our mathematical model is thus

S' =TI — BSW — uS + sl bt
E' = 8SW — aE — uE t # t
f'rzu.E'—HI—,frf t =+ Ty,
W' = T — W t# th

AW = —rW t=t; .
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Figure 2. The model. Humans can be susceptible (S), exposed (£) or infected (/).
Once infected, they release parasites (/) into the drinking water. The infection rate is
p, the rate of developing infection is o, the recovery rate is /< and the parasite birth
rate is - The human birth and death rates are [I and u. The parasite death rate is uy.

See Figure 2. Note that S, E, I and W are nonnegative. Furthermore, since
these quantities are averages, we do not assume that individuals are
necessarily infected with only one worm at a time.

We use mass-action transmission since the interaction between parasites
in the water and humans involves drinking parasite-laden water. Thus, since
everyone in the village usually drinks from a single source, each human has
roughly equal chance of encountering the parasite.

3. The system without impulses

First, we shall analyse the corresponding system of ODEs. Note that
S+ E' +I'=MN—puS+E4+1T).

Thus,

5+E+Ig£.
i

Hence,
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These inequalities overestimate the parasite levels in the water, but they
allow us to estimate these levels without solving the original system of
differential equations. This will be useful in the next section.

The disease-free equilibrium satisfies

(SCE T V) = ( ELII[!_ ) 'i_l)

L

The endemic equilibrium satisfies
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The Jacobian matrix is

1V — — 0 SN

i i Y — W

i _

(11 e, 0.0,0

0 () . — W

The characteristic polynomial satisfies

|V —ify — .I - !_'l“ II _-]I ?‘ -|
(—ji — A)det A Ll = I,

t — R — |Ila' - A
1 "y — W — A J

Thus

0=A +2%a + 2u + 6 + pw) + Ao+ p)(e +p) + (o 4 p)pw + (8 + p)pw]
+ (e 4 p)ls + o)y — oy 35

Since the non-constant coefficients of powers of A are all positive, the

threshold condition will be solely determined by the sign of the constant
term. It follows that

[Levy 4

a4 w4 pediows

H'[] —

where Ry is a threshold predicting disease invasion or eradication [18].

Thus, if Ry < 1, then the disease-free equilibrium is stable and is the only
equilibrium. If Ry > 1, then the disease-free equilibrium is unstable and the
endemic equilibrium exists. Note that R, is increasing with I1. «v, < and f,

decreasing with . fyyrand K.

Theorem 3.1. If Ry > 1, then the endemic equilibrium is asymptotically
stable.
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Proof. The characteristic polynomial for the endemic equilibrium satisfies

— AW — = A 0 I — 18
0 = et i = A Y pS
i I —K — i — A ()
{ 0 “, —pw — A

Expanding the first column, we have

0= (=0 —u— ,\:-{ — A = N+ 2 4 5+ pw ) — Af(a + (s + ) + (a4 pw + (5 4 ppw

— v 4 e dim 4 pedpow 4+ an 'Jf.H'} + dWal—pwnr — kX + 345)
We thus have

My asd +as +a A +ap =10

ay =W 4+3pu+a+is+uy =0

as = (AW + a4+ 2p 4+ 8 4+ pw )+ (a4 (s + o) + (o 4 o + (8 + jelpw = 0

ap = (AW 4 (a4 e jiw + g+ pow )+ (W (e + o + (G0 4 (s + o jow
+ a4 w4 iy —avids — dWax

ag = (AW 4 pilec 4 i 4+ popow — COW 4+ o 38 — dWapw s + dWady S

We have

ay = (AW + p)(e+ p)e + (W 4 @)+ ) (i + pw )+ (BW + p)ia+ ppw
ot L \ , mpe gl
+ (AW + e + pjpw + o+ )6+ p)pw — apw (n +p + o + ?)
— _.-ﬂi—’a-r;
= AW (o + p)r + pla + p)s + (BW + ) o+ ) (a4 pw) + (BW + p){a + )
H(OW 4 ) (5 4 ppw + (o + ) (5 + pw — g (5 4 p) — (5 + p)ppw
— _.-ﬂi—’a-r;
= AWk + pla + )i + (BW + ) (o 4 @) (g + pw) 4+ (OW + ) (o + ppew
+ (AW + p)(k + ppw = 0.

Then
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Since all the coefficients of the characteristic polynomial are positive, it
follows that all the roots have negative real part. Hence, the endemic
equilibrium is asymptotically stable.

Education will discourage infected individuals from putting infected
limbs into the drinking water. This will decrease . Filtration of drinking
water using cloth filters will decrease 7. Continuous chlorination of the water
will increase uy. All of these interventions will result in R, decreasing.
However, continuous water treatment is neither desirable nor feasible, due to
environmental and toxicity issues, as well as limited supplies of resources.
We will thus consider discrete chlorination.

4. The system with impulses

In this section, we use inequality (3.1) to overestimate the number of
larvae in the water. This allows us to solve the corresponding impulsive
differential equation, in order to derive sufficient controls.

Suppose we have maximum growth of larvae in the water, so that we
have equality in (3.1). Then we have the one-dimensional impulsive
differential equation

¢ cell- .
| § AR —— S ¢+ i
wk+p) 0 7 (4.3)

AW = —rIV t =1

It follows that, for a single impulsive cycle fi = ¢ = #;4 the solution is

(4 o vl 1 ‘g LA
Wit 1= H*{!‘ﬂ__:n THWARR L TR — . [1 —r_"”"'"-""'“_‘:"l] .
it ) fpiw (K + (i)
where 117(¢} ) is the value immediately before the impulse and Wt} is the
value immediately after. For simplicity of notation, we can denote
W =Wty and W = W(t; ). The degree of overestimation in (4.3) is

shown in Figure 3.
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Figure 3. Comparison of the actual W with the overestimate used when the growth
rate is assumed to be maximal.

If we start on the endemic equilibrium, then the parasite values at the
impulse times satisfy
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Thus, the general solution satisfies

all~

H"_ — i1 r.ll.'—ll —puwitan—t1) IS r_Il.-_l_ —uwitn—ta) 4 ! l:l re —pwity =ta_1) 1l
frpow s 4 )

(4.4)

(1 — ) 2p—mwita—t1) _ (1 _ pyr-d—pwitn—tz) _ .y _,-.“-.',-_;_,-,:_l.]

We have thus derived a general solution for the maximal number of
parasites in the water. This occurs immediately before chlorination is applied
and was derived from the overestimate (3.2). Note that this solution does not
depend on the time between chlorinations being fixed.

4.1. Fixed chlorination

If chlorination occurs at fixed times, then {,, — #,,_{ = 7 1s constant.
We thus have
. oIl T ; 2 Dy n—1_ —(n—1luyT
Wy = ———— |14+ (1 —7)e ™™ 4 (1—7)2e w7 4 ... 4 (1 —r)" e (nDrw
ppw (K + )

—eTHwT (1 + (1 —rje™ W7 4. 41— r)”‘za':_"‘”_zwwr)]

__ally [l (onrer (1o rJ”‘“‘_m_MT]
pptw e +p) | 1= (1—rjeHw? 1—(1—r)e—HwT
lm W= — 1 wwr 1 ]
n—oc pptw (e + o) [1— (1 —rje—#wr 1—(1—rje—#Hw?
B aly [ 1 —eHwT
Coppw (s ) [ 1= (1 —r)e—nwT

This is the long-term maximum value of the infected water (since the
effect of the impulse is to immediately reduce the level of infection). To keep

this below a desired threshold 11", we thus require

kY
! :|1:|e=:_=v:|:JF l-

— ln ally —(1— -T':'”-_F"f.“rﬁ"':” +
all~y — ﬁ",u,;.tw (k4 )

This is the maximum period between water treatments required to keep the
infection below 1"
Note that 11" must satisfy

it “ K
fefw (i 4 i

1 (4.5)
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from (3.2).
It follows that, in the case of fixed chlorination, we can derive a maximal

(fixed) period of chlorination that will keep the parasite level strictly below a
threshold of our choosing.

4.2. Non-fixed chlorination

In resource-constrained regions, regular disease control may be difficult,
due to limited resources and infrastructure [35]. In particular, chlorinating
water at fixed intervals may be difficult or impossible. In order to determine
the “next best” chlorination time under these circumstances using (4.4), the
entire history of chlorination would need to be known. This is unlikely to be
the case, so we assume that only the two most recent chlorination events are
known. Specifically, we assume that

¢ —rw (fn =t o || ii i1 |'1.' - “l
We thus have

. ol L~
W, =

" P [1_.J..:lgf--.—f-lu"l;_ht—f:ﬂ.—ﬂ_:l _|_|:1_I.jf.—.l.nu-'l;tu—tu_u_|_1
fepew | R 1 )

— |:]_ _— ‘;l-':”'\-_ll-lu'.l;tﬂ_fﬂ—ﬂ_:l _ E.L—f.ll-l"l;fn—fn_i_;l .

To keep this below 11, we thus require

1 —r(1 —re —Hwltn—tn_2) _ IJ —_ ."]u'_"'“-'i-:"'_""‘—l.' o H-;'-',!'-'li" l:H + K J (46)
! ’ ' ' - Ok ]__l'

Hence, if the previous two chlorination times are known, then the “next best”
chlorination time satisfies

| 22

CRW L — 7l —rietwin-z (2 — plerwinot — Winpw (s + )/ (ally)

To compare fixed and non-fixed chlorination, suppose the chlorination times
in the non-fixed case are constant, 7. For »=1, we have
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all~ - -
W o ' l—e™#WT| =« W
i J‘I’ .Ia“l‘bi e + .I-i' :. [ ]

) 1 alls
T In =
iy ally — Wipey (8 + )

— '-llm.\:'-_ l ‘ ’

Thus, when r = 1, the two options are equivalent.

Note that r,...(0) = (. For non-fixed chlorination, when » =0,
. cell~y - = - =
W o~y [f.—ﬂpu-- 4o HWT ] g 2uw T —pw ]
ppw (5 + g
cell~y

oppw (R4 )

Thus, if i7" = 1~ (which we expect), then, from (4.5), there is no solution.
Furthermore, from (4.5),

i ol
g (s A g
r.tH ':.

Tl — ey e

i

since 0 <r < 1. Thus

olly = e (8 + i)
clly = (1 — vl i w + i)

and hence Tmax (7 is defined for all 7.

Define Tmax to be the constant period in the non-fixed case with
equality in (4.6). Then Tmax satisfies

I.I",u,uw (K + i)
e[y '

I'ET _ 1:|t.:—2|'-'1-'|-"7'ma~:-: _ ?.E--._l'-"l-'l-""'m-a:-: + 1 -

If "?-um_!{ =0, then
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rir—11—r+1= Hlil_'i + jt ]
arbln
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The second root is larger than 1 and can thus be discounted. The first root is
greater than zero, since ally It follows that non-fixed

IR ST

chlorination will only be successful for o < = = 1, where

:t* [‘l‘.l_ LW * Mo+ ()
\" ( l.l l"

n=1-—

That is, there is a minimum degree of effectiveness required in the non-fixed
case.

It follows that, when chlorination is not fixed, we can derive the “next
best” chlorination time, assuming the previous two chlorination times are
known. We have also demonstrated that non-fixed chlorination is always
inferior to fixed chlorination (and has an additional requirement of minimum
efficacy), but that both can control the disease.

5. Numerical simulations

We used Latin Hypercube Sampling and partial rank correlation
coefficients (PRCCs) to explore the sensitivity of R, to parameter variations.
Latin Hypercube Sampling is a statistical sampling method that allows for an
efficient analysis of parameter variations across simultaneous uncertainty
ranges in each parameter [9]. PRCCs rank each parameter by the effect it has
on the outcome when all other parameters are kept at median values. We used
1000 simulations per run.

Figure 4 illustrates the degree of sensitivity of each parameter on Ry,
using ranges in the table. Parameters with PRCCs > 0 will increase R, when
they are increased, while parameters with PRCCs < 0 will decrease R, when
they are increased. The three parameters we have the most control over are

the parasite death rate uy, the transmissibility £ and the parasite birth rate '
due to chlorination, filtration and education, respectively. From Figure 4, we
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Figure 4. Tornado plots of partial rank correlation coefficients (PRCCs) of all seven
parameters that influence R,. Parameters with PRCC > 0 will increase R, as they
increased, whereas parameters with PRCC < 0 will decrease R as they are increased.
Variations in the parasite death rate uy and the parasite birth rate 7 will have the
greatest effect on the outcome.

see that two of these — the parasite birth and death rates — are the parameters
that have the largest impact on the outcome.

Figure 5 illustrates the effect of the three parameters we have the greatest
control over on R, as all parameters are varied simultaneously. This shows
that increasing the parasite death rate is unlikely to lead to eradication, even
if the death rate is quite high. Conversely, decreasing the parasite birth rate
or the transmissibility to very low levels is likely to lead to eradication.

To examine the three crucial control parameters in more detail, we
fixed all other parameters at their sample values and set Ry = 1. The
resulting surface is plotted in Figure 6. Parameter combinations under the
surface will lead to eradication, while those above will maintain disease
persistence. The outcome is significantly dependent on changes in <. Even

if uy were increased tenfold, it is still unlikely to lead to eradication, while f
would have to be reduced to extremely low levels.

In order to determine the relative utility of the three interventions, we
considered the effect of reducing the parasite birth rate and transmissibility
to 1% while increasing the parasite death rate by a factor of 100 (which is
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Figure 5. Sensitivity of the basic reproductive ratio R, to the three parameters we
have the greatest control over: the parasite birth rate, the transmissibility and the
parasite death rate. However, R, is only guaranteed to be less than 1 if the parasite
birth rate or the transmissibility are sufficiently small. Even if the parasite death rate is
extremely high, eradication is not guaranteed.
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Figure 6. Eradication threshold for the three parameters with the greatest influence on
Ry. Eradication will occur if the infection rate is reduced to a tiny fraction of its
current value (through filtration of drinking water) or the parasite death rate is
increased more than tenfold (through chlorination) or if the parasite birth rate is
reduced to approxmately a 1% of its current size (through education).

Table 1. Parameter values. The average transmissibility f was derived from (7 drinks
of water per day) x (365 days)/(100,000 larvae)=0.02555. This represented the ratio of
total yearly water ingested to number of parasites. The average lifespan 1/u was set to
70 years. The average infectious time 1/  was set to be 1 hour (the length of time that
an infected foot is actually submerged in the water), so that & = 24 x 365 = 8760
years '. The birth rates per 1000 people in the four endemic countries are 46.09
(Mali), 43.34 (Ethiopia), 33.25 (Sudan) and 28.09 (Ghana) [14], giving an average of
37. All parameters were distributed uniformly over their ranges.

Parameter Definition Range Sample value  units Reference

S susceptible individuals (state variabley  Si{0) = I/ people -

E Exposed individuals (state variable) Eiy=10 people -

I [nfectious individuals (state variabley  T{0) =10 people -

W Waterbhorne larvae {state variabley WD) = 200 larvae -

I birth rate 28 - 46 37 people vears ™! [14]

transmissibility 0-0.03 0.0255 larvae ™! years™! {calculated)

p death rate 0.01 - 0.02 0.0142 years ! (14]

M recovery rate 1000 - 15000 ST60 }'u;lr:-._l {ealculated)

a rate of worm emergence  0.8-1.5 1 :\.'l“"l[':\_l [I? ]]
parasite birth rate 0 - 100,000 100,000 larvae people™ ' vears™' [34]

W parasite death rate 0 - 200 26 years ™! [34]

chlorine effectiveness 0 - 100% ans - {assumed )
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equivalent to decreasing the parasite lifespan to 1%). Figure 7 illustrates the
four scenarios for 1000 simulations each, with all other parameters kept at
their sample values. Without intervention, R, remains firmly above 1. If the
parasite death rate is increased by a factor of 100, then the average R, is
lowered but still above 1. This suggested that eradication is unlikely. If the
transmissibility is decreased to 1% of its sample value, then the average is
below 1, but the upper quartile value is not. This suggests that eradication is
possible, but may not always occur. If the parasite birth rate is decreased to
1% of its sample value, then both the average and the upper quartile value are
below 1. This suggests that eradication is likely.

We also determined the approximate cutoff values for eradication for our
three parameters of interest. (The values are approximate since the LHS
method produces slightly different results with every simulation.) Our
requirement for “likely eradication” was that the upper quartile value of R, be
less than 1. When the parasite birth rate was in the range 0-1000, Ry = 0.3
(interquartile range 0.1-0.8). This corresponds to a decrease in worm
emergence by a factor of 100. When the transmissibility was in the range 0-
0.00016, Ry =0.35 (IQR 0.1-0.95 This corresponded to a decrease in the number
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Figure 7. Boxplots illustrating the variation in R, without intervention, when the
parasite death rate is increased by a factor of 100 or when the transmissibility or the
parasite birth rates are reduced by a factor of 100.
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of drinks per day by a factor of 159.6. When the parasite death rate was in the
range 0-8500, Ry, = 0.35 (IQR 0.1-0.95). This corresponded to an increase of
the parasite death rate by a factor of 327, or a lifespan of approximately 1
second. Thus, eradication through parasite control is extemely unlikely.

The effect of annual chlorination is illustrated in Figure 8A. In this case,
despite significant reductions in the larval population immediately after
chlorination, the population returns to high levels quite quickly. The number of
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Figure 8. The long-term effects of interventions. A. Persistence of the disease under
annual chlorination. Chlorination was assumed 90% successful and applied annually.
All parameters were their sample value in the table. Note that infection levels are low,
since individuals are infectious for only a brief time (the amount of time they
physically submerge their foot in water). However, the burden of the disease is
expressed through the exposed class, where individuals are infected with Guinea
worms for months at a time. B. Eradication of the disease when the parasite birth rate

is decreased. Parameters used were the same as the previous scenario, except that
“'=1000 (see Figure 6).



152 Robert J. Smith? et al.

susceptibles remains low, while almost all individuals remain infected.

The effect of reducing the parasite birth rate by 99% is illustrated in
Figure 8B. In this case, the number of exposed and infectious individuals
approaches zero and the entire population becomes uninfected.

6. Discussion

We stand at the brink of eradicating one of humanity’s oldest scourges
[22]. There are three criteria for the eradication of an infectious disease: 1.
Biological and technical feasibility; 2. Costs and benefits; and 3. Societal and
political considerations [2]. GWD satisfies all three. While eradication efforts
have been immensely successful thus far, the final phase of eradication will
occur in resource-poor and underfunded areas of the world. Knowing which
strategies may be optimal will be of enormous benefit.

Smallpox remains the only disease we have completely eradicated,
despite eradication hopes for malaria, yaws and yellow fever in the twentieth
century [2], and current eradication programs, such as polio [41] and leprosy
[25]. Measles, rubella, and hepatitis A and B are biologically and technically
feasible candidates for eradication [28]. Mathematical models have also
examined the potential for eradication of other diseases, including trachoma [32],
sleeping sickness [13] and HIV/AIDS [30, 36, 40].

A critical tool for smallpox eradication, in addition to an extremely effective
vaccine, was photographic disease-recognition cards [17], demonstrating that
non-biomedical interventions were also important. Barriers to smallpox
eradication included cultural traditions, a lack of societal support and religious
beliefs. Despite strong biological, technical and cost-benefit arguments for
eradication of many infectious diseases, securing societal and political
commitment has been recognised as a substantial challenge [2].

The most effective way to eradicate GWD is to reduce the parasite birth rate.
This can be achieved via education; specifically, teaching people not to put
infected limbs into the drinking water. Although behaviour changes are, in
general, notoriously difficult, GWD eradication programs have had significant
success in altering people’s behaviour. If 99% of people can be persuaded not to
put their infected feet in the drinking water, then eradication is assured. While
chlorination can theoretically control the disease and we have provided estimates
for the necessary frequency and strength of chlorination, numerical simulations
demonstrate that education is far more effective. Thus, our results here are not
advocating for something untested, but rather point to the importance that one of
the three existing intervention methods - namely, persuading people not to put
infected limbs in the drinking water - will have in the final push towards
complete eradication.



Modelling Guinea Worm Disease 153

Mathematical models of large parasites, such as Guinea worms, are often
referred to as models of macroparasites, with the biological distinction
referring to the fact that these worms cannot complete their life cycle within
the individual host. A central factor in such models is that large worms do not
usually confer immunity and that the removal of one worm does not imply
that the host is free of infection [3]. Here, we simplify this notion, in order
to understand the transmission dynamics of GWD with a simpler model,
taking the presence of the parasite in the environment as a single
homogeneous compartment. This formulation allows us to analyse an
impulsive system that overestimates the environmental parasite load, giving
us insight that more complex models may struggle to achieve. Examples of
similar formulations for non-impulsive systems include cholera [15],
schistosomiasis [16] and baculovirus [4].

There is a complex interplay between education and eradication; more
educational tools may become available in future years which may affect
the speed of eradication. However, we note that the simple education
strategy we have considered here — convincing people not to put their
inected feet in the water — has a significant payoff: 100,000 parasites are
immediately prevented from entering the water system. Conversely,
chlorination is unlikely to be as efficient and has other issues, such as
toxicity.

The model has a number of limitations, which should be acknowledged.
Chlorination does not occur instantaneously, but rather takes some time.
However, impulsive differential equations have been shown to be robust,
even for quite large delays [37]. Chlorination may not reach every drinking
source, depending on the difficulty of reaching certain areas. Education and
filtering may not be applied uniformly, depending on access to information
of particular communities, as well as their ability to absorb it. We have also
restricted our simulations to small communities rather than large urban
centres. As a result, we have used mass-action transmission and constant
birth rates, rather than recruitment rates. Future work will include the
effects of secondary infection, as well as more detailed stages of the life
cycle of the disease.

While we used sample parameters to illustrate the potential for
eradication, Latin Hypercube Sampling allows us to explore sensitivity of
the results to variations in those parameters. This allows us to capture the
inherent variation present in the real world, such as non-uniform education,
filtering or chlorination effects.

The final steps towards eradication of GWD should take place within
the next few years. Our modelling shows that education is the most
effective intervention method, but a combination of education, chlorination
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and filtration will likely be required to achieve the final steps in the long
journey to eradication. By mustering both scientific and cultural resources,
we can successfully defeat one of the oldest diseases in human history.
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