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Abstract Background The emergence of drug resistance is one of the most prevalent
reasons for treatment failure in HIV therapy. This has severe implications for the cost
of treatment, survival and quality of life.

Methods We use mathematical modelling to describe the interaction between T cells,
HIV-1 and protease inhibitors. We use impulsive differential equations to examine
the effects of different levels of protease inhibitors in a T cell. We classify three
different regimes according to whether the drug efficacy is low, intermediate or high.
The model includes two strains: the wild-type strain, which initially dominates in the
absence of drugs, and the mutant strain, which is the less efficient competitor, but has
more resistance to the drugs.

Results Drug regimes may take trajectories through one, two or all three regimes,
depending on the dosage and the dosing schedule. Stability analysis shows that re-
sistance does not emerge at low drug levels. At intermediate drug levels, drug resis-
tance is guaranteed to emerge. At high drug levels, either the drug-resistant strain will
dominate or, in the absence of longer-lived reservoirs of infected cells, a region exists
where viral elimination could theoretically occur. We provide estimates of a range of
dosages and dosing schedules where the trajectories lie either solely within a region
or cross multiple regions.

Conclusion Under specific circumstances, if the drug level is physiologically tolera-
ble, elimination of free virus is theoretically possible. This forms the basis for theo-
retical control using combination therapy and for understanding the effects of partial
adherence.
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1 Introduction

The effects of drug resistance have altered the history of disease progression (Pillay
et al. 2006). Drug resistance can emerge with lack of adherence to any strict drug
therapy (Janeway et al. 2006). Mutation development occurs quickly at a rate of ap-
proximately 3 x 107> per nucleotide base cycle of replication (Janeway et al. 2006).
Since HIV is highly variable, it rapidly develops resistance to antiretroviral drugs
(Janeway et al. 2006). This results in the spread of a different form of HIV, so that
antiretroviral therapy can no longer control the virus (Wheeler et al. 2010).

Many mathematical models have been developed to describe drug resistance (Shiri
and Welte 2008; Shi et al. 2008; Huang et al. 2010; von Wyl et al. 2012; Wagner and
Blower 2012; Heye et al. 2012), but such models have focussed on the emergence
of drug resistance during continuous therapy (Wu et al. 2007; Rong et al. 2007a,
2007b; Mohanty and Dixit 2008; Bhunu et al. 2009; Smith? and Aggarwala 2009;
Kitayimbwa et al. 2013; Rosenbloom et al. 2012). A more recent tool to model drug
dynamics is impulsive differential equations. Smith? and Wahl (2004) used impul-
sive differential equations to model the interaction between cell/virus dynamics and
reverse transcriptase inhibitors, integrase inhibitors and fusion inhibitors. Smith? and
Wahl (2005) also used impulsive differential equations to model drug resistance by
considering immunological behaviour for HIV dynamics, including the effects of re-
verse transcriptase inhibitors and other drugs that prevent cellular infection. Smith?
(2006) answered the question of determining how many doses may be skipped before
HIV treatment response is adversely affected by the emergence of drug-resistance us-
ing impulsive differential equations. Krakovska and Wahl (2007) developed a model
that predicts optimal treatment regimens, and used this model, coupled with impul-
sive differential equations, to investigate the effects of adherence. Lou and Smith?
(2011) developed a mathematical model that describes the binding of the virus to T
cells in the presence of the fusion inhibitor enfuvirtide using impulsive differential
equations. Lou et al. (2012) used impulsive differential equations to develop a rigor-
ous approach to analyze the threshold behaviours of nonlinear virus dynamics models
with impulsive drug effects and to examine the feasibility of virus clearance.

The other major class of antiretroviral drugs used to treat HIV-positive patients are
protease inhibitors (PIs). PIs aim to stop the viral protease, which cleaves polypro-
teins to produce the virion proteins and viral enzymes (Janeway et al. 2006). This de-
creases the number of infectious virions that bud from the infected CD4™ T cells and
increases the number of non-infectious virions, which cannot infect other susceptible
T cells (Janeway et al. 2006). Modelling PIs is significantly different to modelling
reverse transcriptase inhibitors, integrase inhibitors and fusion inhibitors, since cells
still become infected and still cause budding even with drug present. Here, we exam-
ine the conditions required for the emergence of drug resistance to protease inhibitors
during HIV-1 drug therapy.

We consider two strains: the wild-type strain, which initially dominates in the
absence of drugs, and the mutant strain, which is the less efficient competitor, but has
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more resistance to the drugs. At an intermediate level of drug, the drug will affect the
wild-type strain alone, whereas a high level of drug will control both strains (Rong
et al. 2007b; Kepler and Perelson 1998). We describe three models for each drug level
and use impulsive differential equations to model the drug dynamics flowing between
each model.

This paper is organised as follows. In Sect. 2, we present the model describing the
interactions between the CD4 ™ T cells, the wild-type and mutant virus, and the drugs.
In Sect. 3, we fix the drug level as a constant and find the equilibrium points, as well
as the stability, for all three regions. In Sect. 4, numerical simulations are performed
to show the effects of varying drug levels. We conclude with a discussion.

2 The Model
2.1 T Cells

We use nine state variables describing CD4™ T cells in a variety of stages during
infection and while on drugs. The variable Ts describes susceptible CD4™" T cells,
whereas T7 and Ty describe cells infected by wild-type or mutant virus, respectively.
Once an intermediate level of drug has entered the cells, we have three new classes.
Tpn describes the susceptible cells that have an intermediate level of drug. Tp; and
Tpy describe the cells that are infected with the wild-type or mutant strain, respec-
tively, and that also have an intermediate level of drug. As more drug is taken, a CD4*
T cell is inhibited with a high level of drug. We have three such cell types: susceptible
cells inhibited with high drug levels, Tppy; cells infected with the wild-type strain,
Tppr; and cells infected with the mutant strain, 7p py. We also describe the virions
by V; and Vy for the wild-type and mutant strains, respectively. Non-infectious virus
is denoted by Vy. The interaction between the cells and virus can be seen in Fig. 1,
and a description of the state variables is listed in Table 1. When low drug levels are
present, there is not enough drug to inhibit the T cells from being infected by either
the wild-type or the mutant strains. When intermediate drug levels are present, there
is not enough drug in the T cells to inhibit the drug-resistant strain from producing
infectious virus, but cells infected with the wild-type strain will only produce non-
infectious virus. When high drug levels are present, T cells are unable to produce
infectious virus, regardless of whether they are infected with the wild-type or mutant
strain.

2.2 Drugs

Similar to Smith? and Wahl (2004), we use P (¢) to denote the intracellular concen-
tration of the drug and its active metabolites. We assume that drugs are taken at (not
necessarily fixed) times #;. The effect of the drugs is assumed to be instantaneous,
resulting in a system of impulsive differential equations, whereby solutions are con-
tinuous for ¢ # #; (satisfying the associated system of ordinary differential equations)
and undergo an instantaneous change in state when ¢ = #;. This can be assumed since
the time during which the drug is absorbed is smaller than the time during which the
drug is cleared (Smith? and Schwartz 2008).
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Fig.1 The model. (a) The model for Region 1. Ts, T7 and Ty are the susceptible, infected with wild-type
strain and infected with mutant strain T cells, respectively. V; and Vy are the wild-type and mutant strains,
respectively. A is the rate of new T cells produced. In Region 1, there is not enough drug to inhibit the T
cells from creating either wild-type or mutant virus. (b) The model for Region 2. Tpy, Tp; and Tpy
are the susceptible, infected with wild-type strain and infected with mutant strain T cells, respectively,
at intermediate drug levels. P is the drug concentration and m p is the clearance rate. In Region 2, there
is not enough drug in the T cells to inhibit the mutant strain from producing infectious virions, but the
wild-type strain can be controlled, meaning it will only produce non-infectious virions, Vy . (¢) The model
forRegion 3. Tppy, Tppy and Tp py are the susceptible, infected with wild-type strain and infected with
mutant strain T cells, respectively, at high drug levels. In Region 3, there are sufficient levels of drug in the
T cells to inhibit infectious viral budding of either strain

According to impulsive theory found in the mathematical literature (Lakshmikan-
tham et al. 1989; Bainov and Simeonov 1989, 1993, 1995), we can describe the nature
of the impulse at time #; via a difference equation

AP=P(st) ~ P() = flte P m

where f(z, P) is a mapping of the solution before the impulse, P(z, ), to after the
impulse effect, P(t,:r ).

To model the effects of resistance mutation on drug efficacy, we consider the dose-
effect curve illustrated in Fig. 2. Here, the solid line shows a dose-effect curve for the
wild-type virus, while the dashed line shows the same curve for a drug-resistant strain
with 10-fold resistance; drug resistance implies an increase in the half-maximal in-
hibitory concentration I Csq of the drug. The axis, or effect, in the dose-effect curve
is the probability that a given T cell absorbs sufficient quantities of the drug to pre-
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Table 1 Definition and units of parameters/state variables

Parameter/State variable Units Description

ny clay*1 Number of virions produced by a susceptible CD41 T cell

® Proportion of infectious virions produced

ry day_1 Infection rate of CD4™T T cells with wild-type virus

ry day_1 Infection rate of CD4T T cells with mutant virus

dy da)F1 Death rate for the virus

dg day*1 Death rate for the susceptible CD4T T cells

dy day_1 Death rate for the infected CD4F T cells

rp pM_l day_1 Rate at which drug inhibits CD4T T cells when drug
concentrations are intermediate

rpp pM_1 day_l Rate at which drug inhibits CD4 " T cells when drug
concentrations are high

dp day*1 Drug clearance rate

A cells pL_1 day_l Production rate of CD41 T cells

mp day_1 Clearance rate of the drug from an intermediate inhibited
cell

mpp day_1 Clearance rate of the drug from a highly inhibited cell

Py uM Region 1 threshold

P uM Region 2 threshold

T day Dosing interval

P! M Drug dosage

Vi virus pM~ ! Wild-type virus

Vy virus prl Mutant virus

Vn virus pM71 Non-infectious virus

Ts cells pM_l Susceptible CD4™ T cells

Ty cells pM*] CD4™1 T cells infected by the wild-type virus

Ty cells pM*I CD471 T cells infected by the mutant virus

Tpn cells pM_l Susceptible CD41 T cells with an intermediate level of
drug

Tpr cells pM*I CD4™1 T cells infected by the wild-type strain also with an

intermediate level of drug

vent the viral protease from being created in order to stop viral budding. Thus, when
P < P (Region 1), this probability is negligible for both viral strains. In some region
P1 < P < P, (Region 2), this probability remains negligible for the drug-resistant
virus, but grows monotonically with dose for the wild-type. Similarly, when P > P,
(Region 3), the probability of blocking the viral protease is significant for both wild-
type and drug-resistant strains, although higher for the wild-type. In all three cases
where the probability that the viral protease will be blocked is non-negligible, we
assume that the probability grows linearly with increasing dose, although at differ-
ent rates for different strains and regions (note that the dose-effect curves in these
regimes are much closer to linear than suggested by this semilog plot). The Region 1
and Region 2 thresholds (P; and P,, respectively) are calculated similarly to Miron
and Smith? (2010). Our model of HIV dynamics, therefore, consists of three distinct
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Fig. 2 Example of dose-effect curves for the wild-type (solid curve) and 10-fold resistance (dashed curve)
virus strains. When drug concentrations are in Region 1, the amount of drug absorbed is insufficient to
control either the wild-type or mutant strain. When the drug concentrations are in Region 2, drug absorbed
can block the wild-type strain, but the resistant strain still emerges. When the drug concentration is in
Region 3, both virus strains are controlled. This example is for the protease inhibitor ritonavir

systems in which different drug actions are possible, depending on the drug concen-
tration P (see Fig. 1).

2.3 Combining T Cell Populations with Virus and Drugs

The dynamics of the CD4™ T cells and virus can be modelled by the following set of
ordinary differential equations:

dv
d_tl :anTI —dVV1 —r1T5V1 —V[TPNVI —VITPPNVI
dVy
TS =njo(Ty + Tpy) —dyVy —ryTsVy —ryTpnVy —ryTppn Vy
dVy
ek ni(l—w)(T; +Ty +Tpy) +ni(Tp; +Tppr +Tppy) —dvVy
dT
d—ts =A—riTsVi —ryTsVy —dsTs —ajrpPTs + mpTpy
dT
d_tl =riTsV; —d;T; —oyrpPT; +mpTpg
dT
d_tY =ryTsVy —diTy —ayrpPTy + mpTpy
dT,
d[;N =oarpPTs —mpTpy —ryTpNyVy —riTpy Vi —dsTpy (2)
—arppPTpy +mppTppn
dT,
dfl =riTpyVi+a1rpPT; —mpTp; —arrpp PTpy +mppTpp; —diTp
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d?:Y =ryTpnVy +a1rpPTy —mpTpy —oarpp PTpy +mppTppy —diTpy
dT;;)N =axrppPTpy —mppTppy —ryTrpnVy —r1Tppy Vi —dsTppy
di;’t” =r;TppNVi +a2rppPTp; —mppTpp; —d;Tpp;

de% =ryTppnVy +aorpp PTpy —mppTppy —diTppy,

for t # t; (see impulsive conditions below). This model varies between the three
regions mentioned in Sect. 2.2 by simply changing «1 and «5. In Region 1, o1 =0
and ap = 0. In Region 2, ¢; = 1 and o = 0. In Region 3, ¢y = 1 and oy = 1.

Here, ¢ is the time in days, n; is the number of virions produced per day, w is
the proportion of infectious virions produced from an infected CD4™ T cell, and r;
and ry are the infection rates of CD4™ T cells with wild-type or mutant virus, respec-
tively. The constant A is the rate at which new susceptible CD4™" T cells are produced,
while the death rates are denoted by dy, ds and dj for the virus, the susceptible and
infected CD4™ T cells, respectively. We denote by 7p the rate at which drug inhibits
the T cells when drug concentrations are intermediate and the drug concentration is
denoted by P. Note that, once the wild-type virus infects Tpy, the new infected cell
only produces non-infectious virus. The rate m p is the clearance rate of the drug from
an intermediate inhibited cell. The rate at which drug inhibits the T cells when drug
concentrations are high is denoted by rp p. The rate m p p is the clearance rate of the
drug from a highly inhibited cell to an intermediate inhibited cell.

All death rates, rates of infection and A are assumed to be positive. We assume
0 <« w <1 andry > ry (ie., the wild-type is the more infectious strain of the virus).
Futhermore, ds < d; < dy (Ho et al. 1995).

In order to analyze this model, we consider each region separately and look at
sub-models of system (2).

Consider Region 1 («¢; =0 and ap = 0). We assume here that the primary differ-
ence between wild-type and mutant virus is the rate of infection and that, in the ab-
sence of drugs, the wild-type strain is the better competitor. Also, there is not enough
drug to inhibit the T cells from being infected by either the wild-type or the mu-
tant strains. In this case, dTL’;l” Y is negative, meaning Tp py decays to zero. This also
means Tpy, Tpy, Tpy, Tppy and Tppy decay to zero. This then forces all terms
in the first six equations of system (2) including Tpy, Tp;, TPy, Tppn, Tppr and
Tppy to decay to zero. Thus our subsystem excludes all the terms including Tpy,

Tpr, Tpy, Tppn, Tppr and Tppy.

The same can be concluded for the subsystem for Region 2 (w1 = 1 and ap = 0).
Again dTL’;tP Y is negative, meaning Tppy decays to zero. This also means Tpp; and
Tppy decay to zero. This then forces all terms in the first nine equations of system
(2) including Tppn, Tppy and Tppy to decay to zero. Thus, our subsystem excludes

all the terms including Tppn, Tppr and Tppy.
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In summary, we have the following subregions of system (2), for # # #.
For P < P (Region 1, Fig. 1a), the dynamics of the CD4™ T cells and virions are

given by

dvy

e =n1wT1 —de[ —71T5V1
dt

dv

d—l‘Y =n1a)Ty —deY —ryTsVY

dVy

e =n;(1 —w)(T; +Ty) —dyVn
3

dTs
7=K—71T5V1—VyT5VY—dsTS
dT;

— =riTsV; —d;T

dt 148VI1 1147

dTy

— =ryTsVy —d;Ty.

dt YLsVvy 11y

For P; < P < P, (Region 2, Fig. 1b), the dynamics of the CD4™ T cells and
virions are given by

dvy
W =n16z)T1 —de[ —r1T5V1 _VITPNVI

dVy

T niw(Ty +Tpy) —dyVy —ryTsVy —ryTpnVy
dVy

——=n;(1 —w)(Ty +Ty +Tpy) +n;Tp; —dyVy

dt
dT
d—tS =A—riTsVi —ryTsVy —dsTs —rpPTs +mpTpy
dT,
d—tI:rITSVI—dITI—erTI +mpTp; “)
dT
d_tY :ryTs‘/y —d1Ty —erTy +mpry
dT
dl;N :erTS —mprN —ryTpNVy —I‘ITPNV1 —dSTPN
dT
dfl =rpPTy —mpTp;+riTpnVi —d;Tp;
dT
dft)y =rpPTy —mpTpy +ryTpNyVy —diTpy.

For P > P, (Region 3, Fig. Ic), the dynamics of the CD4™ T cells and virions are

given by
dV;

— =njwly —dy Vi —riTsVy —riTpn Vi —riTppn V)
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dVy
= =njo(Ty + Tpy) —dyVy —ryTsVy —ryTpnVy —ryTppn Vy
dVy
o =ni(1 —w)(T;+Ty +Tpy) +n;(Tp;+Tpp;+Tppy) —dyvVy
dT
d—tS =A—riTsVi —ryTsVy —dsTs —rpPTs +mpTpn
dT,
d—tI =riTsVi—d;T; —rpPTi +mpTp;
dT
d—tY =ryTsVy —diTy —rpPTy +mpTpy
dT
di =rpPTs—mpTpy —ryTpnVy —r1TpN Vi —dsTpn (5)
—rppPTpn +mppTppn
dT
dfl =riTpnVi+rpPT; —mpTp; —rppPTp; +mppTppr —diTp
dT,
dfy =ryTpnVy +rpPTy —mpTpy —rppPTpy + mppTppy —diTpy
dTppN
T rppPTpy —mppTppy —ryTppnVy —riTppn Vi —dsTppy
dTpp;
o =riTppnVi+rppPTpr —mppTppr —diTppr
dTppy
ar =ryTppNnVy +rppPTpy —mppTppy —diTppy.

The dynamics of the drug are modelled using impulsive differential equations. The
exponential decay can be written as a differential equation, where P (t) is the drug
concentration. The dynamics of the drug are

ar _ dpP t#t1
g e k

AP = P! t=t.

(6)

The rate at which the drug is cleared is dp and P’ is the dosage. Assuming a drug is
taken at time 7, by the definition of an impulsive effect, we have

P(t)=P(t;)+ P'. @)

Here we assume that P (0) = 0.
Thus, (3)-(5), together with (6) describe our three-regime model of impulsive dif-
ferential equations. A list and description of all the parameters and state variables can

be found in Table 1.
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3 Analysis
3.1 Asymptotic Behaviour

In order to interpret system (2), we analyze each region separately. We investigate the
stability of each equilibrium by fixing the drug concentration level as a constant in
order to approximate the effect of the impulsive periodic orbit. Region 1 has no effect
from the drug concentration, but the analysis of Regions 2 and 3 include P* as the
representative value of drug levels. Section 4 demonstrates numerically the effects of
changing the drug concentration levels (including the impulse condition).

3.1.1 Region I1: Low Drug Levels
System (3) has three equilibrium points.

Disease-Free Equilibrium The disease-free equilibrium is

A
Vi, Vy, Vn, Ts, Ty, Ty) = (0, 0,0, d—,O, 0)-
s

The basic reproductive number of Region 1, Rp 1, is computed using the next-
generation method (Diekmann et al. 1990; van den Driessche and Watmough 2002)
at the disease-free equilibrium. Using the same notation as van den Driessche and
Watmough (2002), we find

0 0 0 0
0 0 0 0
F=1nTs 0 o0 0
0 ryTs 0 0

dy + VITS 0 —njw 0

V= 0 dy + ryTS 0 —njw
o 0 0 dy 0 ’
0 0 0 d;

where F' is non-negative and V is a non-singular M-matrix. Then Ry ; is the spectral
radius of the FV ~! matrix. Thus,

Ro,1 =max{Ro 1,4, Ro,1,5}

FiAR[@ ryAnjo }

= max ,
{ di(dvds +rir) di(dyds+ryd)

Note that Ro, 1, > Ro,1.» since r; > ry.

Theorem 3.1 The disease-free equilibrium is locally asymptotically stable in Re-
gion 1 if Ro,1 <1 and unstable if Ry;1 > 1.
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Proof The Jacobian matrix for Region 1 is

—dv — VITS 0 0 —r1V1 njw 0
0 —dv—ryTS 0 —I‘yVy 0 nrw
_ 0 0 —dy 0 ni(l—w)n;(l —w)
- —V[TS —ryTS 0 —ry V] — ryVY — ds 0 0
riTs 0 0 riVy —dj 0
0 ryTs 0 ry Vy 0 —dj

For the disease-free equilibrium, V;=Vy=0and 75 = %, so the characteristic
polynomial is

0= det(J(VI, Vy,VN.Ts, T, Ty) — ,LLI(,)
= (=dv — W)(=ds — W[u* +aip + b1 ][11* + aap + ba], ®)

where

ay=dy +rTs+d;
by =didy +diryTs+njoryTs
ay=dy +ryTs+d;
by=ddy +diriTs —njor;Ts

_ didyds + riid;

1—R .
dS ( O,l,a)

We have by > 0if Rp 1 4 < 1. By the Routh—-Hurwitz conditions (Truccolo et al. 2003;
Allen 2006), the Jacobian matrix has all eigenvalues with negative real part. Thus the
disease-free equilibrium is locally asymptotically stable when Ry ; < 1 and unstable
when Ro 1 > 1. g

Endemic Equilibria The wild-type equilibrium is
V1. Vy, V. Ts. Tr, Ty) = (V1,0, Vi, Ts5. T1. 0),

where

— dsdy +rih
v, = dsdv

I (Ro, 1,0 — 1)

rrdy
— _ ni(l —w)(dsdy +ri))

R —1
N ridy(njw —dy) (Ro.L.a = 1)
— Ay
Ts=
(dsdy +riA)(Ro1,a — 1) +ds
— dsdy +r)
T, = (Ro,1, — D).

ri(njw—dy)
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The mutant equilibrium is

Vi, Vy, VN, Ts, T1, Ty) = (0, Vy, VN, T5,0,Ty),

where
— dsdy +ryi
Vy = u(1'30,1,1] -1
rydy

= ni(l —w)(dsdy +ryh)
V= R —1

N rydy(njw —dy) (Ro.1.p = 1)
_ Ady
Ts=

(dsdy +ryA)(Ro,1,p — 1) +ds

— dgdy 4y
Ty=——""""(Ro1p— ).

ry(njo —dy)

The wild-type equilibrium exists if Ro 1, > 1, and the mutant equilibrium exists if
Ro1.p > 1.

Theorem 3.2 When the endemic equilibria exist (Ro,1,, > 1 and/or Ro.1» > 1), the
wild-type equilibrium is locally asymptotically stable and the mutant equilibrium is
unstable.

Proof For the wild-type equilibrium, Vy = 0, the characteristic polynomial is
0=det(J(V;. Vy. Viy. Ts. T1. Ty) — pls)
=(dv + M)[Mz +aiu+ bl][ﬂ3 +ayp® + bop + 2],
where

ay =dy +ry75+d1

_ didy(r; —ry)
B—

by

a) = FIVI +ds+dp +dy +I’ITS
by=(dy +riTs)ds+ (r;V;+ds)d; +dyriV;
c2=(drdy +riTsd; —njor;Ts)(rVi+ds) —riTs(rVid —riVinjo)
=di(dsdy +riA\)(Ro,1,a — D).
Since r; > ry, we have aj, b; > 0 meaning the quadratic equation uz +aiu + by
has no roots with non-negative real parts. We have ay, b>, c2 > 0 and axbr — ¢ > 0
if Ro,1, > 1. By the Routh—-Hurwitz conditions (Truccolo et al. 2003; Allen 2006),

the Jacobian matrix has all eigenvalues with negative real part if Rp; > 1, meaning
the wild-type equilibrium is locally asymptotically stable whenever it exists.
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For the mutant equilibrium, V; =0, the characteristic polynomial is
0= det(J(VI, Vy,VN.Ts, T, Ty) — MIG)
= (dy + w[p? +aip+ b1 [ + asp® + bop + 2],
where

aj=dy +rTs+d;

_didy(ry —ry)
DE—

ay=ryVy+ds+d;+dy +ryTs

b

by=(dy +ryTs)ds+ (ryVy +ds)d; +dyryVy
c2=(didy +ryTsd; —nyoryTs)(ryVy +ds) —ryTs(ryVyd; —ryVynyow)

= (dsdvdr +ryA)(Ro,1,6 — 1).

Since the mutant equilibrium has the same characteristic polynomial as the wild-type
equilibrium, except that ; and V; are interchanged with ry and Vy, we have a; >0
and b < O since ry —r; < 0. By the Routh—Hurwitz conditions (Truccolo et al. 2003;
Allen 2006), the Jacobian matrix has an eigenvalue with positive real partif Ry 1 > 1,
meaning the mutant equilibrium is unstable. g

We can also show that no interior equilibria exist for realistic parameters in Re-
gion 1. We assumed that r; > ry since the mutant virus is less infectious.

Theorem 3.3 For system (3), if rj # ry, there are no interior equilibria.
Proof Let ry # ry. For an interior equilibrium, we have V; # 0 and Vy # 0. Setting

the right-hand side of system (3) to zero, we get, from the fifth and sixth equations of
system (3),

7, ="L15v, )
dp

Ty = L Tsvy. (10)
dj

Setting the first equation of system (3) equal to zero, and substituting 77 as in Eq. (9),
we get

njw—dj
}’1T3V[T —dyV;=0.

Since V; #£ 0, we have

dyd;
Tg=—"—.
ri(njw —dy)

(1)
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Similarly, setting the second equation of system (3) equal to zero, and substituting Ty
as in Eq. (10), we get

dyd;

Ts=——"—,
ry(njw —dy)

(12)

since Vy # 0.
This implies that »; = ry, which is a contradiction. (I

In summary, if Ro1 < 1, the disease-free equilibrium is locally asymptotically
stable in Region 1, and if Ry 1 > 1, the wild-type equilibrium is locally asymptotically
stable and the disease-free and mutant equilibria are unstable in Region 1. Also, in
Region 1, there are no interior equilibria.

3.1.2 Region 2: Intermediate Drug Levels

In this case, the drug concentration level affects the outcome of the system. We denote
the equilibrium solutions by X as those not affected by the drug dynamics (Region 1),
and denote the equilibria by X* as those that are affected by the drug dynamics (Re-
gions 2 and 3). System (4) has four equilibria. In all cases, we fix P* constant such
that P| < P* < P, where P; and P, are the Region 1 and Region 2 thresholds,
respectively.

Disease-Free Equilibrium The disease-free equilibrium is
Vi, Vy, VN, Ts, T1, Ty, Tpn, Tpr, Tpy, P) = (0,0,0, 7§, 0,0, T5y, 0,0, P*),

where
5 _ A mpT;;N
S ds +rpP* dg+rpP*
Arp P*
ds(mp +dg) +dsrp P*’

* —_—
Tpy =

The basic reproductive number in Region 2, Ry 2, is computed as before using the
next-generation method and is given by

Ro,2 =max{Ro 2.4, Ro2,p}

where
no(ryTs +ryTpy)
dr(dy +ryT;+VyT;N)
njw(mp(riT§+riThy) +dirTS)
di(d;+rpP*+mp)(riTg +riTpy +dy)

Rop2.a=

Ro2.p =

Theorem 3.4 The disease-free equilibrium is locally asymptotically stable in Re-
gion 2 if Ro2 < 1 and unstable if Ry > 1.
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Proof The Jacobian matrix for Region 2 is J = [J1]J2], where

[—dy —rjTs —r;Tpy 0 0 —riVy
0 0 —dy 0
—rTs —ryTg 0 —r;Vi—ryVy —dgs—rpP
7= riTs 0 0 riVy
1= 0 ryTs 0 ry Vy
—riTpy —ryTpN 0 rpP
riTpn 0 0 0
0 ryTpn 0 0
L 0 0 0 0 ]
B njw 0 —riVy 0 0 0 7
0 nyw —ryVy 0 nyw 0
nf(l—w) n;(l—w) 0 ny nfl—w)y 0
0 0 mp 0 0 —rpTs
J _ —d1 —er 0 0 mp 0 —rpT1
2= 0 —dy —rpP 0 0 mp  —rpTy
0 0 —mp—ryVy—r1V1—d5 0 0 rPTS
rpP 0 riVy —mp —dj 0 rpTy
0 er ry Vy 0 —mp — d] rpTy
L 0 0 0 0 0 —dp

For the disease-free equilibrium, V;* = V = 0, so the characteristic polynomial is
0= det(J (V} Vi Vi T4 T} T3 T Ty Ty P) = whho)
= (dy +wWp + W[’ +arp® +bip +er] f (W),
where
ar=mp+d;+dy+riT§ +riTpy +d+rpP*
by=(d;+rpP*)(dv +riT§ +riTpy)
+(mp+dp)(dy +riTg+ri Ty +dr+rpP*) —mprpP* —njor;T§

ct=di(riTsy +riT§ +dy)(dr +rpP*+mp)(1 — Ro2p)

and where
_dV_”YTS—”YTPN 0 nrw 0 nyw
—ryTg —ds—rpP 0 mp 0
f () =det ryTs 0 —d; —rpP* 0 mp
—ryTpn rpP 0 —mp —dg 0
ryTpN 0 er 0 —mp—d[

The third-order polynomial /ﬁ + aluz + b1 + ¢y has aj,c; > 0 and a;by —
c1 > 01if Rp2p < 1. Thus, by the Routh—Hurwitz conditions (Truccolo et al. 2003;
Allen 2006), the third-order polynomial has all eigenvalues with negative real part.
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Computing the determinant of f(u), we get
det[ f ()] = [1* + aap + bo ][ + azp® + b3 + c3],
where

a, =2ds+rpP*+mp

by =dgrp P* +ds(mp + ds)

a3=rpP*+2d; +dy +ryTs +ryTpy +mp

by=—mprpP* — nlwry(TS* +Tpy) + (er* —|—d1)(dv +ryTg + ryT;fN)
+(mp+d)(rpP*+di +dv +ryT§ +ryThy)

c3=(dv +ryT§ +ryTpy)[—mprpP* + (mp +d;)(d; +rpP*)]
—no[ryT§(mp +dp) +mpry Ty +ryT$rp P* +ryTpy(dp +rp P¥)]

=di(ryTy +ryT$ +dy)(di +rpP*+mp)(1 — Rop.a).

We have a3z, ¢c3 > 0 and a3b3 —c3 > 0if R 2, < 1. Hence, by the Routh—-Hurwitz
conditions (Truccolo et al. 2003; Allen 2006), the Jacobian matrix has all eigenvalues
with negative real part meaning the disease-free equilibrium is locally asymptotically
stable when Rp > < 1 and unstable when Ry > 1. 0
Endemic Equilibria The wild-type equilibrium is

Vi, Vy, VN, Ts, Ty, Ty, Tpn, Tpy, Tpy, P)
= (VI*7 07 V;v T;s T]*9 07 T;Ns T;Iv Oa P*)s

where V' is the positive root of the quadratic equation

V[*z + %V[* + Y1 :09

e}
&1
for

_ dymp(rp P* +dj)
" (rpP*+dp)l(mp —dp)(rpP*+d;) —rpP* +d]

o] :I"Iz(d[ —‘rer*)
Br=ri(di +rpP*)(mp+ds—mprpP*) +ri(rih —dyr})

&1

+ (mp +er*)(d1 —i—er*) —rlzéler*K
1
Y1 =r1er*)L<E— —mp —ds—i-er*—i-d])
1
n mp +rpP*

£ [rIA—dVr1A+(d1 —i—er*)(mp +d5—mper*)]
1
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and where
vE nr(1 —a))T —i—n]TPI
N dy
TH )L-l-mPTPN
s l”[Vl>k +ds +rpP*
7% — deI* —|—r1T§"VI* —I-}’[T;NVI*
! njw
T* rpT;P*
PN mp +r V) +ds
T _er*TI*—i-r[T;;NVI*
Pl = .

mp +dj
The mutant equilibrium is
Vi, Vy, VN, Ts, Ty, Ty, Tpn, Tp1, Tey, P)
= (0. Vi Vi T30 T3, T . 0. Ty P¥),

where V is the positive root of the quadratic equation

B2
2+ EVE =0,
52 s "
for
£ — (di +rpP*)(mp +dj) +mprp P*
*T oW +rpP*+mp)(mp +dp)
o) =Try
Br=ds+rpP* —Ery(mp +dp)
y) =—&dy(mp -I-d[)(ds-i-er*)—ry)»(mp +dr)+ryi
and where
V*=n1(1—a))T;‘+n1(l—w)T;‘Y
N dy
T* — A+mpTpy
S ryV;,k-Fds-l-l’pP*
o VTS meThy
L d; +rpP*
VPP*T;<
Tiy=—T00 05
ds+ryVy +mp
" FPT;P*—FryT;NV;
PY = :

mp+dj

@ Springer



76 R.E. Miron, R.J. Smith?

The interior equilibrium is
Vi, Vv, VN, Ts, T1, Ty, Tpn, Ter, Tpy, P)
= (VI*’ Ve Ve T5 T Ty Tpy Tpps Tpy, P*)7
where V is the positive root of the quadratic equation

$1Vi2 4+ 8V + (a1 +a2) =0,

for
* * n3 —1n2
a1=ryk[(n1w—(d1 +rpP )+'71er )(mP“l‘dS“r — )
+rpP*ni(rp P* +1)(d; +er*)i|
* * n3—n "
aZ:(’?1+VPP dv—dv(d[ +rpP ))[(ﬁ +ds+rpP )
(m + 3_Zz+d)—er*mp:|
=22 P*dy —dy(d; +rp P*
1=\ 4 (m +rpP*dy —dy(d; +rpP*))
2 2a 2 % "
S =ryh PR (mer —rpP —d1+n1a))
__ hjomp +njw(d; +rpP*)
n= m+ P +d; +njorpP*
ry * . .
- rpP rpP*+1)(d; +rpP
mrPP*dV_dV(dI-l-er*)[ P (771( P )( 1 P ))
+ (110 = (dr +rp P*) + mrp P)(np +ds)]
d p*
n3 = rilmp +dp) |:r *(w_(dl‘i‘rPP*))
dy(mp +d;) —rpP*dy mp +d;
er*
— d P* o d
+<n1a) (dr +rp )+mp+d1>(mP+ S)]
ry
- —dy—rpP*—nrpP*
mrpP*dy —dy(d; +er*)[”"° r=re mre P*]
ri(mp +dj) |: rpP* ]
b= njw—dy—rpP*+ ———
rpP*dy —dy(mp +dj) ! 1 P mp +d;
and where
ypo_ mely

dy +riT§+riThy
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nr(l— C())(T;< + T{; + T;;Y) +I’l[T;I
dy
TH _ A(mp +ryV;‘+r1V1*+d5)
S Ty Vi + Vi +ds +rp P (ry Vi + 11 Vi +ds) +mp(ry Vi +r V] +ds)

Vidy +riTg+riTpy)

Vy =

T = njw
o _TYVyTg+mpTpy
v d; +rpP*

N rpP*T§

PN = o ey Vi TV 1 ds
rpP*Ty +riTpy V)
mp+dj
rpP*Vy(dy +ryT§+ryTpy) +ryTpyVy
mp+dy +njorp P* ’

x
Tp =

* o __
TPY_

Theorem 3.5 When the endemic equilibria exist and we have that Ry, > 1 and
Ro2.p > 1, the wild-type and resistant strains will co-exist in Region 2.

Proof For the wild-type equilibrium, V¥ = 0, the characteristic polynomial is
0=det(J(V), Vy, VN T§. T) Ty . Tpn . Tp . Tpy, P¥) — julio)

= (—dv — W (=dp — W[’ +ap® + bu+c] f (),

where
—dy —I’]T;—I’]T;N —VIVI* nyw
—FIT; —FIVI*—ds—FPP* 0
J(p) = det riTg iV —d; —rpP*
—rIT;‘N I"pP* 0
VIT;;N 0 er*
—rIV[* O
mp 0
0 mp
—mp—ds—r‘]VI* 0
ry VI* —mp — d[
and where

a=2d;+rpP*+mp+dy —i—ryT;—{-ryT;N
b=(dy +ryT§+ryTpy)[(mp+di) + (di +rpP*)| + (di +rp P*)(mp +dr)
- ’”YT;nla)-f-mPrPP* —ryT;;NnIa)

c=—njoryT§(mp +dp) + (dv +ryTg§ +ryTpy) (mpd; + d? + dirp P¥)
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—rpP*njoryT§ —ryTpynjomp — ryT;anw(dI —l—er*)
=di(ryTiy +ryTs +dy)(di +rpP*+mp)(1 — Ro2.a)

We have a > 0 and ¢ < 0 if Ry 2, > 1. Hence, by the Routh—-Hurwitz conditions
(Truccolo et al. 2003; Allen 2006), the Jacobian matrix has an eigenvalue with a
positive real part and thus the wild-type equilibrium is unstable.

For the mutant equilibrium, V;* = 0, the characteristic polynomial is

0=det(J(V}, Vy, Vi, T¢, TF Ty Tin, Tp . Tpy. P*) — nho)

= (=dv — ) (=dp — W[’ +ap® +bp +c] f (w),

where
—dy —riTs —ryTpN —ryVy niw
—FyTS —ryVY —ds —}’PP 0
S () =det ryTs ryVy —d; —rpP
—ryTpN er 0
ryTpN 0 FPP
—ryVy njw
mp 0
O mP
mp — dS — I’Yvy 0
ry Vy —mp —dj
and where

a=2d;+rpP*+mp+dy+riT+riTpy
b=(dv +riT§ +riTpy)[(mp +dp) + (dr +rp P*)] + (df +rp P*)(mp +dp)
—riT¢njw —mprpP*
c=—norTgmp +dp) + (dv +riT¢ +riTy)mp +dp)(dp +rpP*)
— er*mp(dV +rT§ + rITIfN) —mpnjorTpy
=di(riTpy +riTg +dy)(di +rpP*+mp)(1 — Roo.p).
In this case, a > 0 and ¢ < 0 if Ro2, > 1. It follows from the Routh—-Hurwitz
conditions (Truccolo et al. 2003; Allen 2006) that the wild-type equilibrium has an
eigenvalue with a positive real part and is thus unstable.

Since the disease-free, wild-type and mutant equilibria are all locally unstable, this
implies that the wild-type and resistant strains will co-exist. d

In summary, if Ro2 < 1, the disease-free equilibrium is locally asymptotically
stable in Region 2, and if Rp 2 > 1, the wild-type and resistant strains will co-exist in
Region 2. However, it should be noted that it is not necessarily the interior orbit that
trajectories approach. There may be other interior periodic orbits or more complex
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behaviour in which both strains co-exist. Nevertheless, in this region, the mutant is
not eliminated.

3.1.3 Region 3: High Drug Levels

If rp > rpp, system (5) has three equilibria: disease free (extinction of virus and
infected cells), wild type (extinction of mutant) and mutant (extinction of wild type).
In all three cases, there is a P* such that P* > P,. If rp < rpp, then there is also an
interior equilibrium, but we expect from the dose-effect curves that this will not be
the case (Bilello et al. 1996).

Disease-Free Equilibrium The disease-free equilibrium is

Vi, Vv, VN, Ts, T1, Ty, Tpn, Tp1, Ty, Tppn. TPp1, TPpY, P)
=(0,0,0,7¢,0,0,T3y.0,0, T py, 0,0, P¥),

where
5 dg +rpP*
g _ PP T +mppTppy
PN mp+ds+rppP*
i _Tep P Thy
PENT mpp+ds

The basic reproductive number in Region 3, Ry 3, is computed as before using the
next-generation method and is given by

Ro,3 =max{Ro,3,a; Ro,3,b} (13)
where

Ro3.0= nm)((dl +rpP* —l—mp)(1111z>p(ryT§k +ryTpy —i—ryT;PN)

+di(ryT§ +ryTpy)) +ryTgdirpp PY)

x (di(dv +ryT§ +ryTpy +ryThpy)(di(dr +rp P*

+mp+rppP*+mpp)+mpmpp+rpP*mpp+rpP*rpp 1"*))71
Rosp=nio(dr+mp)(mp(riT§ +riTpy) +diriT5)

+dirpp P*riT§ + mpmppriThpy)

X (dl(dv +riT§ +riTpy —i—rIT;PN)(d[(dI +rpP*

+mp+rppP*+mpp)+mpmpp +rpP*mpp + VPP*FPPP*))_1~

The Jacobian matrix for Region 3 is J = [J1|J2|J3|J4|J5], where
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[ —dy —riTs —riTpy —riTppN 0 ]
0 —dy —ryTs —ryTpy —ryTppN
0 0
—rITS —ryTS
riTg 0
0 ryTs
J = —riTpy —ryTpn
I‘[TPN 0
0 ryTpn
—riTppN —ryTppN
riTppy 0
0 ryTppn
B 0 —l’]V] nrw 0 T
0 —ryVy 0 niw
—dy 0 nf(l—w) n;y(l—w)
0 —F[V1—I‘yVy—ds—}’PP 0 0
0 riVy —d;—rpP 0
0 ry Vy 0 —d;—rpP
D= 0 rpP 0 0
0 0 rpP 0
0 0 0 rpP
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
B —riVry 0 7
—ryVy 0
0 ny
mp 0
0 mp
0 0
Jy=|-mp—ryVy —r;Vi—ds—rppP 0
riVi —mp—d;—rppP
ryVY 0
VPPP 0
0 VPPP
0 0
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B 0 —r1V1 0
nrw —I’Yvy 0
ni(l —w) 0 ny
0 0 0
0 0 0
mp 0 0
Jy = 0 mpp 0
0 0 mpp
—mp —d[ —FPPP 0 0
0 —mpp —r;Vi —ryVy —ds 0
0 riVi —mpp —d;
rppP ry Vy 0
i 0 0 o
_ 0 0 _
0 0
ny 0
0 —rpTS
0 —rpTI
0 —rpTy
Js= 0 rpTs —rppTpy
0 rpTy —rppTp;
mpp rpTy —rppTpy
0 rppTPN
0 rppTpr
—mpp —dj rppTpy
0 —dp

The Region of Viral Elimination We now investigate the conditions under which
the disease-free equilibrium becomes stable. We will consider a subset of Region 3,
called Region 4, where P* is sufficiently large so that the disease-free equilibrium is
asymptotically stable. We shall refer to this subset of Region 3 as the region of viral
elimination. Rearranging terms in T, from the disease-free equilibrium, we get

_ ArpP*(mpp +ds)
(d} +dsrppP* +dsmpp)(ds +rpP*) +dsmp(mpp +ds)

*
Tpy

If we divide the numerator and the denominator by P*? and take P* — 0o, we get
Tpy —0

in Region 4. Since Ty — 0 and P* — oo, this implies that 7§ — 0. Rearranging
terms in Tj , ,, from the disease-free equilibrium, we get

)Lrpprp P*2
(d2 +dsrppP* +dsmpp)(ds +rpP*) +dsmp(mpp +ds)

* —_—
Tppy =
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Again, if we divide the numerator and the denominator by P*2 and take P* — oo,
we get

Tppy — &
Thus, in Region 4, when P* — oo, the disease-free equilibrium has TS* — 0,
Tpy— O0and TS,y — %.
The basic reproductive number for Region 4 is such that Ry 3 < 1. When P* —
00, we see that Ry 3 defined by (13) equals zero meaning in the limit of P* — oo,
the basic reproductive number certainly drops below unity.

Theorem 3.6 The disease-free equilibrium is locally asymptotically stable when
P* — .

Proof Computing the Jacobian in Region 4 for the disease-free equilibrium, V;' =
Vy =0, we get the characteristic polynomial

0= det(J (V} Vi Vi T3 7 T3 To T51. Ty T o Topr. Tipy . P7)

— pul13)
= (—dp — wW)(—dy — (W +a1® + axp® + azp* + asp® + asp®
+asp +a7) f (1)
where
—dy —ryTppy — 1 njw
_ O —dl — er — M
f(,bL) - det O er
ryTppn 0
nyw 0
mp 0
—mp —rppP —di — mpp
rppP —mpp—di — i

When taking P* — oo, the seventh-order polynomial can be reduced to a third-
order characteristic polynomial u3 + by u? + by + b3, where

by =2mpp+ds+di+dyv+riTppy

by=mpp(ds+dy +riTppy)+ dr +mpp)(dv +riTppy)
+ds(di+mpp+dv +riThpy)

by=mppds(dy +riThpy) +dsdr +mpp)(dv +riTpy)-

By the Routh—Hurwitz conditions (Truccolo et al. 2003; Allen 2006), the third-order
polynomial has all roots with negative real part if b1, b3 > 0 and b1br > b3. The
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Routh—-Hurwitz conditions are always satisfied when P* — 0o, meaning the third-
order polynomial has all eigenvalues with a negative real part.

Computing the determinant of f(u) and taking P* — oo, the fourth-order poly-
nomial can be reduced to a second-order characteristic polynomial u? 4+ au + b,
where

a=dy +ryT;DkPN+dI
b= (dv ~|—ryTI>§PN)d1.

By the Routh-Hurwitz condition (Truccolo et al. 2003; Allen 2006), f(w) has all
roots with negative real part. Therefore, the disease-free equilibrium is locally asymp-
totically stable in Region 4 for P* — oo. 0

Note that elimination of free virus for this model is not equivalent to clearing the
infection. See the Discussion for more details.
It can also be shown that the wild-type equilibrium in Region 4 gives

* rih+dyds
vri
(11— )T +ni(Tp, +Tpp;)

vy .
TH A.+mPT;N
S _r1V1*+dS+I’pP*
Tr rPP*T;+mPPT;pN
PN_mp +r1V[*+d5+rppP*
T* _ VPPP*T;N
PEN ™ pp +r V] +ds
T* — riViTs +mpTp,
! di+rpP*
T* — riViTpy +rpP T +mppTpp,
Pl mp+rppP*+d;
T _erI*T;’kPN_l_rPPP*T;I
PPI =

mpp+dj

and the drug-resistant equilibrium in Region 4 gives

Vi = _(VY?»(VPZP +ds(rp +rpp)) + deVVPP>
ryA(rp +rpp) +dvryrpp
nf(1—o) Ty +T5y) +nTpy
dy
B A+mpTpy
ryVy +ds +rpP*

Vy =

T
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* rpP*Tg +mppTppy

PN:mp—i—ryV;—l—ds—l-rppP*
e reeP Ty
PPN ™ mpp +ryVy +ds
VTS A mpTy
r— d; +rpP*
rx _YVyTpy +re PP Ty +mppTppy
e mp+rppP*+d;
* ryVyTppy +rrr P Thy
Tppy = :

mpp +dj

These are biologically meaningless in Region 4 since V" and V' are negative.
In summary, if P* — oo, the disease-free equilibrium is locally asymptotically
stable and viral elimination is theoretically possible.

3.1.4 Summary of Asymptotic Behaviour

In summary for this section, we find that, at low drug levels (Region 1), resistance
does not emerge and thus the wild-type strain dominates. In contrast, at intermediate
drug levels (Region 2), drug resistance is guaranteed to emerge. Recall that we have
defined intermediate drug levels as the regime in which the drugs significantly inhibit
replication of the wild-type strain but have negligible effect on the drug-resistant
strain.

For high drug levels (Regions 3), there exists a region (Region 4) where both
populations of free virus will be driven to extinction. (We note that our model does not
consider longer-lived reservoirs of virus, such as latent T cells, and thus elimination
of a free virus in our model is not equivalent to clearing infection.) Thus, if the drug
level is very large, virus elimination is theoretically possible.

3.2 Equilibrium T Cell Counts

In this section, we examine the total uninfected T cell count at the stable equilibrium
predicted in low, intermediate and high drug concentrations.

For low drug levels (P < Pjp), we know from Sect. 3.1.1 that the wild-type virus
dominates. The total uninfected T cell count in Region 1 is

— didy
Tg=—"#—/.
ri(njow —dp)
Since nj is large, TS is small. Thus there are low levels of uninfected T cells in
Region 1.
For intermediate drug levels (P; < P < P»), we use the results of Sect. 3.1.2 to

show the total uninfected T cell count for the interior equilibrium is
rpP *Tgf

T;+T;N=T;+m

@ Springer



Resistance to Protease Inhibitors in a Model of HIV-1 Infection 85

=T L
mp +ds

=T +e),

where € is small since m p is large compared to P* in Region 2. For realistic param-
eters in the intermediate drug levels (see Table 1), the total number of uninfected T
cells is only slightly larger than for low drug levels.

For high drug levels (P > P,), we examine the effect on the total uninfected T cell
count as the dosing interval shrinks to zero, or as the doses increase to infinity, which
we have defined as Region 4. The total number of uninfected T cells in Region 4
approaches

Ts +Tpy + Tppn — o
s

where T§ — 0, T3, — Oand T,y — dA—S when P* — oo (described in Sect. 3.1.3).

Thus, the total number of uninfected T cells in Region 4 is identical to the disease-
free state as P* — oo. This implies that, if the drug levels are sufficiently high, the
number of infected T cells approaches that of the uninfected patient.

Note that we do not explicitly have the total number of uninfected T cells in Re-
gion 3. Based on numerical simulations shown in the inset of Fig. 4c, the total unin-
fected T cell count is not as high as in Region 4.

4 Including Impulses

We demonstrate the effects of varying the drug concentration levels by including an
impulse (Eq. (7)). Adding this perturbation will cause drug concentration levels to
fluctuate between regions. The endpoints of the impulsive periodic orbit are used in
order to bound the orbit to stay within a region meaning the representative value P*
stays within a specific region. The endpoints are also used in order to show the effects
of trajectories crossing multiple regions; this does not apply if P* is constant.

4.1 Region Thresholds

We demonstrate the various T cell, virus, and drug behaviours given that the drug con-
centrations may move through all four regions. Based on the results of stability with
P constant in Sect. 3, we expect that, when including the impulse condition and P (¢)
is low, the wild-type strain of the virus should dominate. When P (¢) increases (at-
taining intermediate levels), the wild-type strain can co-exist with the mutant. When
P(t) becomes high, the mutant strain will dominate unless P (¢) is very high, where
we expect viral elimination. Depending on the amount of time the drug spends in
each region (if any), trajectories will likely oscillate, with either co-existence, one or
the other strain gaining dominance, or the drugs eliminating both strains.
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Fig. 3 The possible 10'°
combinations of regions that

drug concentrations may

traverse, for given dosages and Region 3

dosing intervals. All parameters _—
can be found in Table 1. This US FDA B
example is for the protease recommendation
inhibitor ritonavir. The asterisk
is the FDA-approved dosage and
dosing interval for ritonavir.
Note the log scale on the y-axis
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It was shown in Miron and Smith? (2010), assuming perfect adherence that the
impulsive periodic orbit has endpoints

B Piefdp‘r
P) = 1= i

and

Pi

n

as n — oo. Here P! is the dosage, dp is the rate at which the drug is cleared and
T = ty4+1 — tx is the (fixed) time between doses for perfect adherence.
It follows that trajectories will remain solely in Region 1 if

0<P < P1(1 —e_d”f).
Trajectories will remain solely in Region 2 if
Pled’”(l — e_d’”) <Pl < Pz(l — e_dPT).
Finally, trajectories will remain solely in Region 3 if
P> Pzed”f(l — eid”).
4.2 Numerical Simulations

We now illustrate the dynamics of drug concentrations fluctuating between different
regions. Figure 3 demonstrates the regions drug concentration trajectories will visit,
for various combinations of dosing interval and dose. The curves plotted are

Pi=Pi(1-eT)

P'= PPt (1 —em?r7)
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Fig. 4 Infected T cell populations when trajectories of drug concentration remain solely within a region.
Values of 77 and Ty were estimated by numerical integration of systems (3), (4) and (5). The inset shows
the total number of uninfected T cells, and T cells unable to produce infectious virL}s. Note that the thresh-
old for Region 2 is adjusted in (b) as mentioned in Sect. 4. (a) Region 1 (t =1, P' = 10*4). In this case,
there are no cells infected with the drug-resistant strain of the virus. T cells infected with the wild-type
strain dominate, with all other T cells approaching zero. (b) Region 2 (tr = 0.1, P! =0.5). In this case,
both strains of the virus co-exist. There are much higher levels of mutant virus than wild-type virus strains.
(c) Region 3, where the dosing intervals and dosages are not too extreme (tr = 0.1, Pi= 4). In this case,
there are large amounts of the drug-resistant strain, and there is a large population of infected T cells with
the drug-resistant strain with high drug levels. (d) Region 4, the region of viral elimination (z = 0.0001,
P! =30). In this case, both strains of the virus are eliminated. Uninfected T cells with the drug-resistant
strain with high drug levels dominate, with all other T cells approaching zero

Pi=Py(1—e7T)

P = PPt (1 — e 7).

The asterisk in Fig. 3 is the FDA-approved dosage and dosing interval for the protease
inhibitor ritonavir. The recommended dose lies in Region 3.

Figures 4 and 5 illustrate phase-plane plots of the populations of cells able to
produce the wild-type or drug-resistant viral strains. Figure 4 illustrates the drug
concentrations remaining in one specific region whereas Fig. 5 illustrates the drug
concentrations when two or more regions are crossed. In all cases, parameters and
initial conditions are as in Table 2, with only the dosing interval t and the dosage P’
varied. The insets in Fig. 4 show the total number of uninfected T cells or T cells that
only produce non-infectious virions. It should be noted that the results from Fig. 4
are similar if P is fixed or if it is oscillating, since the endpoints of the periodic orbit
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Fig. 5 The behaviour when (a)
trajectories of drug 1.2
concentrations cross multiple
regions. All parameters except
the dose and dosing interval are
as for Fig. 4. Note that the
threshold for Region 2 is
adjusted in Figs. 5 and 5b as
mentioned in Sect. 4. The main
panels illustrate the dynamics
between T cells able to produce
wild-type and mutant virions.
(a) Regions 1 and 2 (t =1,

P! =0.3). In this case, both
strains of the virus co-exist. T
cells able to produce the
wild-type strain are significantly
more numerous than T cells able
to produce the mutant strain.
The inset shows a closer look at
the final time (shown as a solid
circle on the main panels).

(b) Regions 2 and 3 (r =0.5,

Pl = 0.6). In this case, there is
also co-existence, but the T cells
able to produce the mutant strain
dominate. The inset shows the
high number of wild-type
infected T cells unable to
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significantly higher. The inset 10
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elimination. Note that the values
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remain solely within a region. Figure 5 occurs only if P oscillates between two or
more regions.

In Region 1, the wild-type virus dominates. Initially, both strains of the virus
can infect cells (initial increase in Fig. 4a), but if the system stays in Region 1, the
wild-type strain will out-compete the mutant strain. The end result is only wild-type-
infected cells (Fig. 4a) and low amounts of susceptible T cells (inset of Fig. 4a).

If the drug forces the system to stay within Region 2, the mutant strain is the
better competitor since it faces no evolutionary pressure, unlike the wild-type. The
distance between Region 1 and Region 2 is so small that it is likely that the drug will
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Table 2 Range of parameters

Parameter/ Range Initial/Sample  References

State value

variable

njw 102-10* 103 x 0.01 Perelson et al. (1996), Smith? and Wahl (2004, 2005)

ry 0.001-0.1 0.01 Smith? and Aggarwala (2009), Smith? and Wahl (2004)

ry 0.0003-0.03 0.0032 Smith? and Wahl (2005)

dy 1-5 3 Smith? and Wahl (2005), Perelson et al. (1993);
De Boer et al. (2010)

dg 0.002-0.2 0.02 Smith? and Aggarwala (2009), Smith? and Wahl
(2004, 2005), Perelson et al. (1993), De Boer et al.
(2010)

dy 0.05-1 0.5 Smith? and Aggarwala (2009), Smith? and Wahl
(2004, 2005), Perelson et al. (1993), De Boer et al.
(2010)

rp 30-50 40 Smith? and Wahl (2005)

rpp 8-13 10.4 Smith? and Wahl (2005)

A 100-250 180 Smith? and Wahl (2005)

mp 1-4 2410g(2)/6.2  Smith? and Wahl (2005)

mpp 14 2410g(2)/6.2  Smith? and Wahl (2005)

P! #R2:1072-10~"  (varied)

**R3: 1040
**R4: 40-100

dp 2410g(2)/6.2  Smith? and Wahl (2005)

P 103 Section 2.2

Py 1072 Section 2.2

T (varied)

\%t 500 Smith? and Wahl (2005)

Vy 5x 1073 Smith? and Wahl (2005)

Vn 0 Smith? and Wahl (2005)

Ts 1000 Smith? and Wahl (2005)

Ty 0 Smith? and Wahl (2005)

Ty 0 Smith? and Wahl (2005)

Tpn 0 Smith? and Wahl (2005)

Tpy 0 Smith? and Wahl (2005)

Tpy 0 Smith? and Wahl (2005)

Tppy 0 Smith? and Wahl (2005)

Tppr 0 Smith? and Wahl (2005)

Tppy 0 Smith? and Wahl (2005)

P 0 Smith? and Wahl (2005)

** R2, R3, and R4 denote Region 2, Region 3, and Region 4

never remain solely in Region 2. For Fig. 4b, we increased the Region 2 threshold
to P, = 10" in order to show numerically the effect of staying in Region 2. The end
result is co-existence of the wild-type and mutant infected cells with high amounts of
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T cells able to produce resistant virus, and low amounts of uninfected T cells (inset
of Fig. 4b).

If a large enough amount of drug is taken to enter and remain solely in Re-
gion 3, there are higher numbers of mutant-infected cells than wild-type-infected
cells (Fig. 4c). There is also an increase in the number of mutant-infected T cells
inhibited with high drug concentrations (inset of Fig. 4c).

If P is very large such that the system reaches Region 4, there are a large number
of uninfected T cells with high drug concentrations (inset of Fig. 4d) and all the T
cells able to produce infectious virions are eliminated (Fig. 4d). Note that Figs. 4a,
4c and 4d use the same parameters except the dosing interval and the dosage.

More than likely, the drug will allow the system to cross multiple regions. Figure 5
illustrates the dynamics when trajectories cross more than one region.

Figure 5a shows that initially both the wild-type and mutant virus infect suscep-
tible T cells; the curve mimics that of remaining solely in Region 1. Once the drug
fluctuates between Regions 1 and 2, the mutant strain is the better competitor in Re-
gion 2, but the wild-type strain is better in Region 1. This can be seen by the impulses
shown in Fig. 5a. The impulses are better shown by the sharp edges in the inset of
Fig. 5a where we have discontinuities in the derivatives. The end result is co-existence
between strains but mostly all wild-type-infected T cells, meaning the system behaves
similarly to Region 1. Again, we increase the Region 2 threshold to P, = 10! in or-
der to show numerically the effect of staying below the Region 2 threshold since the
distance between the Region 2 and 3 thresholds is so small.

When the system fluctuates between Regions 2 and 3, we observe impulses in
both the wild-type and mutant-infected T cells (Fig. 5b). The end result is a large
number of mutant-infected T cells. Here, again, we increase the distance between the
Regions 1 and 2 thresholds in order to show the results of crossing between Regions 2
and 3. We have co-existence, but mostly the mutant strain dominates. The inset of
Fig. 5b shows the increase in wild-type-infected T cells unable to produce infectious
virions.

When the drug forces the system to move between Regions 1, 2 and 3, we have
near-viral elimination each time the system jumps into high levels of Region 3
(Fig. 5c). The inset of Fig. 5c shows how the trajectories enter Region 4 by caus-
ing the infected T cells to approach zero. Then an impulse occurs, after which the
mutant and wild-type strains increase, causing fluctuations in the infected T cells and
moving away from viral elimination. As a result, there is co-existence but many more
T cells infected by the mutant strain.

In summary, if we include a fluctuation of drug levels, the mutant either dominates
or co-exists in all cases. Whenever Region 2 is entered, the mutant gains a rapid
advantage.

4.3 Sensitivity to Variations

Since parameters may fluctuate, we explore the sensitivity of Rp to the param-
eter values using Latin Hypercube Sampling (LHS). LHS is a statistical sam-
pling method that allows for an efficient analysis of parameter variations across si-

multaneous uncertainty ranges in each parameter (Blower and Dowlatabadi 1994;
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Fig. 6 Sensitivity analysis for (a)
Region 1. (a) Partial rank

correlation coefficients for R -
for all parameters. (b) The effect e T
of the death rate for the infected dl 0662 |
CD41 T cells dj on Ry. (c) The
effect of the number of dvf -0.0558 1
infectious virions produced per . 00325
day from an infected CD4T T i 1
cell njw on Ry ds t -0.0115 g
Ty 0.0113 4
A\ F 0.0026) 4
-08 -0.6 -04 -02 O 02 04 06 08
(b)
12
101

In(basic reproductive number)
(2]
T
L

4 A
o A
0 . . . .
0 0.2 0.4 0.6 0.8 1
(C) infected T cell death rate (dl)

In(basic reproductive number)

0 L L L !

0 2000 4000 6000 8000 10000
number of virions produced (nlw)

Stein 1985); partial rank correlation coefficients rank the coefficients by the degree
of influence each has on the outcome, regardless of whether that influence increases
or decreases the effect.

Figures 6a, 7a, 8a and 9a show the partial rank correlation coefficient sensitivity
analysis for 1000 runs. All relevant parameters are varied against Ry throughout the
ranges given in Table 2. In all regions, Ry is the most sensitive to the death rate for
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Fig. 7 Sensitivity analysis for
Region 2. (a) Partial rank
correlation coefficients for R
for all parameters. (b) The effect
of the death rate for the infected
CD41 T cells dj on Ry. (c) The
effect of the number of
infectious virions produced per
day from an infected CD4T T
cell njw on Ry
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the infected CD4 ™ T cells, d;; the effect of d; on Ry can also be seen in Figs. 6b,
7b, 8b and 9b for Regions 1, 2, 3 and 4, respectively. In Regions 1, 2 and 3, Ry is
also sensitive to the number of infectious virions produced per day from an infected
CD41 T cell, njw; the effect of n;w on Ry can also be seen in Figs. 6c¢, 7c and 8c
for Regions 1, 2 and 3, respectively. In Region 3, Ry is also sensitive to the infection
rate of susceptible CD4" T cells with mutant virus, ry; the effect of ry on Ry in
Region 3 can also be seen in Fig. 8d. In Region 4, Ry is sensitive to the clearance rate
of the drug from a highly inhibited cell, m pp, and the drug dosage, P*; the effect
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Fig. 8 Sensitivity analysis for Region 3. (a) Partial rank correlation coefficients for R for all parameters.
(b) The effect of the death rate for the infected CD4™ T cells d; on Ry. (c) The effect of the number
of infectious virions produced per day from an infected CD4T T cell n;w on Ry. (d) The effect of the
infection rate of susceptible CD4 T T cells with mutant virus ry, on Ry

of mpp and P* on Ry in Region 4 can also be seen in Figs. 9c and 9d, respectively.
Figures 6, 7 and 8b, c and d were run using a Monte Carlo simulation with parameters
drawn using LHS. The LHS of all remaining parameters not seen in Figs. 6, 7, 8 and
9 are approximately uniformly scattered. Varying njw and d; does not reduce Ry
below 1 in Regions 1 or 2. In Region 3, however, there are values for which Ry <
1, corresponding to the region of viral elimination. As P* gets very large, varying
the parameters does make R( increase beyond unity; Rg is always below unity in
Region 4. Note that the difference between variations in P* and the impulse effects
are that P* varies in an orderly way, whereas the impulse occurs at a fixed, regular
time. Thus, if P* varies slightly, it may not have a big effect on R since the impulse
may be the cause of the change.

5 Discussion

Drug therapy is crucial to the well-being and survival of HIV-infected patients. The
strict drug regimens are often difficult to follow due to major side effects and pill
fatigue. We have shown the different effects of having low, intermediate and high
levels of drug concentration in a cell, and shown that, in all cases, entering Region 2
causes the mutant to gain rapid advantage.

Initially, we showed the effects on the wild-type and mutant virus populations
when drug concentrations in a cell are constant at either low, intermediate or high
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Fig. 9 Sensitivity analysis for Region 4. (a) Partial rank correlation coefficients for R for all parameters.
(b) The effect of the death rate for the infected CD4™ T cells d 1 on Ry. (¢) The effect of the clearance rate
of the drug from a highly inhibited cell m p p on Ry. (d) The effect of the drug dosage P on R

levels. We conclude that, if the drug level is at an intermediate or high state, then
drug resistance will emerge. We also showed that there is a theoretical region of free-
virus elimination.

The number of uninfected T cells was also calculated in each region for a constant
drug concentration. This is important because a higher number of uninfected T cells
means a greater chance of controlling the virus and fighting off opportunistic infec-
tions. We showed that the total uninfected T cell count in Region 4 approaches that
of the disease-free state. We also showed that Region 2 not only has low levels of
uninfected T cells, it also has a large number of T cells able to produce the mutant
strain. Similar results apply numerically when drug-concentration levels vary.

Numerical simulations showed the effects of varying the drug-concentration lev-
els. This perturbation, included in the impulse, allows us to examine the effects of
varying the drug-concentration levels either solely within a region or across multiple
regions. Entering Region 2 depends on the drug dosage and the dosing interval. We
have shown that T cells able to produce the mutant strain will dominate if trajectories
enter Region 2. This will cause drug resistance and drug failure. It was also shown
that crossing all 3 regions results in a high number of T cells able to produce the
mutant strain. We have also shown that Region 1 has a high number of T cells able to
produce the wild-type strain and a low number of T cells able to produce the mutant
strain. Thus it is better for trajectories to remain in Region 1 than in Region 2 since
the wild-type strain can be controlled by antiretroviral therapy.

The recommended dosage and dosing interval for one of the FDA-approved pro-
tease inhibitors, ritonavir, is shown in Fig. 3. If taken with perfect adherence, the
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recommended dosage and dosing interval would remain in Region 3, causing the
mutant strain to remain very low. However, if the drug is not administered at the rec-
ommended time (twice a day for ritonavir), then trajectories would fall into Region 2
(by moving to the right in Fig. 3) where a rapid outbreak of mutant virus would oc-
cur. This can also be seen from Fig. 4. The high amount of mutant-infected T cells
inhibited with high drug levels in Region 3 (inset of Fig. 4c) would rapidly become T
cells that are able to produce infectious mutant virions when the drug level lowers and
enters Region 2. Thus adherence is crucial to avoid the development of resistance.

Both a high dosage and small dosing interval are necessary in order to avoid drug
resistance and theoretically attain viral elimination. Although drug toxicities may
limit the extent to which this optimum can be approached, such a scenario is theo-
retically possible for protease inhibitors. One limitation is that the model does not
include certain viral reservoirs such as latently infected cells or reproductive reser-
voirs. These reservoirs would cause the virus to persist even when in Region 4. Thus
elimination of free virus in our model is not equivalent to clearing the infection. A fur-
ther limitation is that we restricted P* to be constant in the analysis. Similar results
can numerically be shown for varying drug levels. Future work would be to develop
and compute stability analysis with varying drug levels in order to theoretically show
the same results that are shown numerically in the Figs. 4 and 5. Another limita-
tion is that the system only includes protease inhibitors. In reality, most patients take
triple drug cocktails including protease inhibitors and reverse transcriptase inhibitors,
fusion inhibitors and/or integrase inhibitors. This would also change the dynamics
of the system. Combination therapy can down-regulate the effectiveness of certain
drugs, meaning their half-life and /Cs values could change. Future work would be
to examine the effects of combination therapy using impulsive differential equations.

It should be noted that our model considers monotherapy for a single protease in-
hibitor (or, equivalently, an aggregate of multiple protease inhibitors with the same
treatment cycle). Although monotherapy is not recommended, it is often used in the
developing world, especially where economics make combination therapy impossi-
ble (Okero et al. 2003). Monotherapy is sometimes used when other treatments have
failed, or used after prolonged viral suppression. Bierman et al. (2009) and Calza and
Manfredi (2012) showed that patients with prolonged viral suppression on highly
active antiretroviral therapy (HAART) can successfully be treated with protease in-
hibitor monotherapy. Pillay et al. (2010) showed that a boosted protease inhibitor
monotherapy following a 24 week second-line induction was associated with an in-
crease in low level viraemia, although generally in the absence of PI resistance. Fur-
thermore, understanding monotherapy is a useful precursor for developing complex
models of combination therapy.

It is theoretically possible to eliminate free virus in this system if the drug concen-
tration level is very high. The total uninfected T cell count in Region 4 is similar to
that of the disease-free state. It was shown numerically that the results for constant
drug concentration are similar to varying drug concentrations. Thus high dosage and
low interval time between doses can theoretically lead to an elimination of free virus
and a disease-free uninfected T cell count.
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