

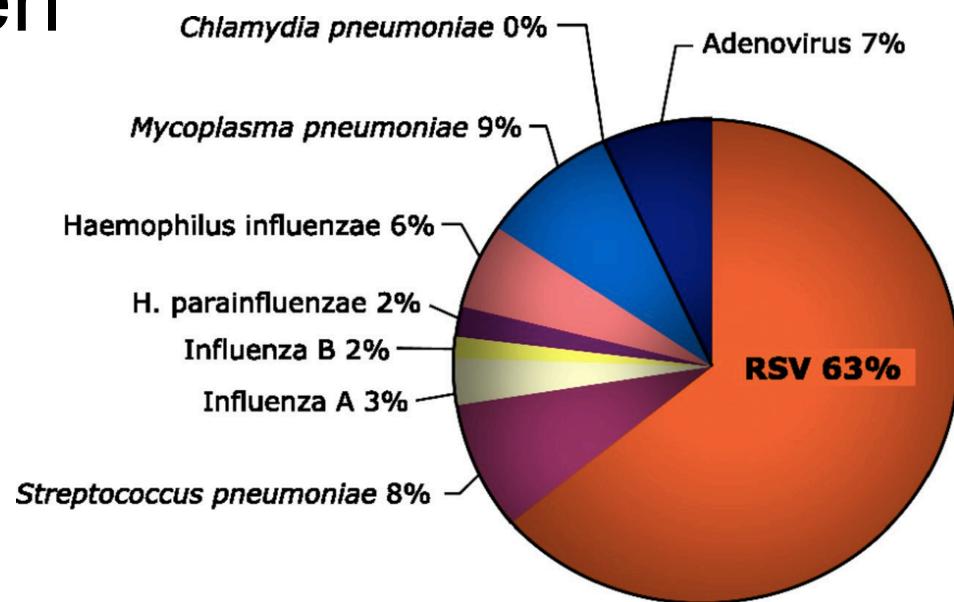
Unexpected infection spikes in a model of Respiratory Syncytial Virus vaccination

Robert Smith?

Department of Mathematics and Faculty of Medicine
The University of Ottawa

Respiratory Syncytial Virus (RSV)

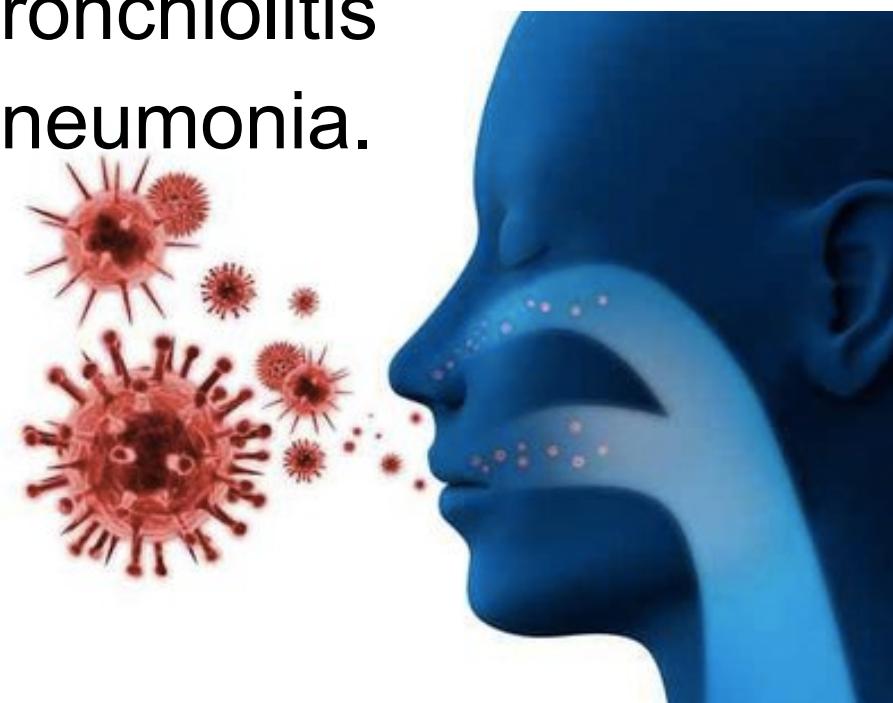
- The main cause of acute lower respiratory infections in adults and young children
- Almost all children have been infected by age 2
- About 0.5–2% of infants require hospitalisation due to infection
- In 2005, 33.8 million new episodes of RSV occurred in children under 5 worldwide.



Etiology of acute respiratory infections in children.

Symptoms

- Mild symptoms:
 - cough
 - runny nose
 - sore throat
 - earache
 - fever
- Major symptoms:
 - difficulty breathing
 - blue skin due to lack of oxygen
 - bronchiolitis
 - pneumonia.

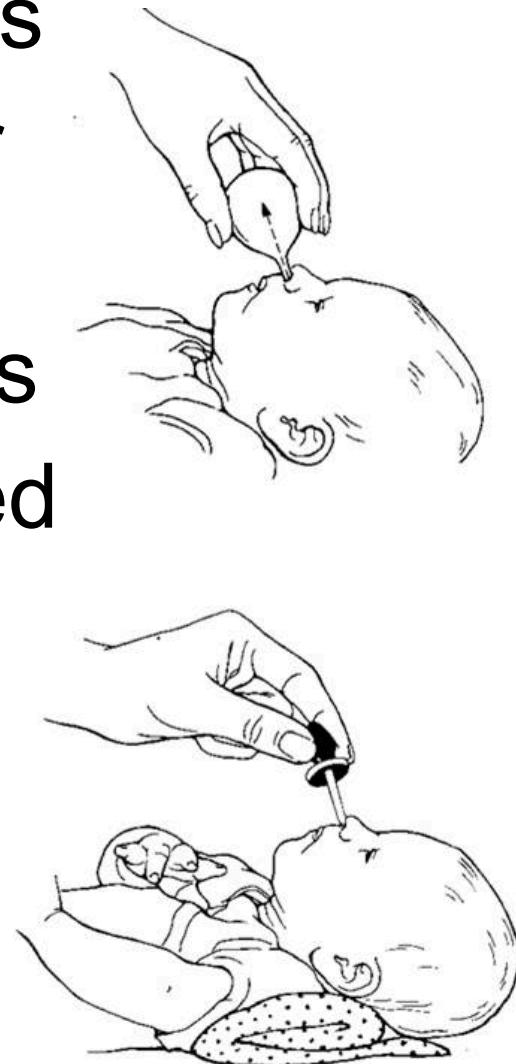


Burden of RSV

- Highest number of observed cases occurs in children aged six weeks to six months
- Morbidity occurs in <0.1% of cases
- Immunity is short-lasting
- Reinfection is common
- Hospitalisation costs are substantial
- Infection can occur throughout adult life
 - often a cause of mortality in the elderly
- RSV is a significant economic and healthcare system burden.

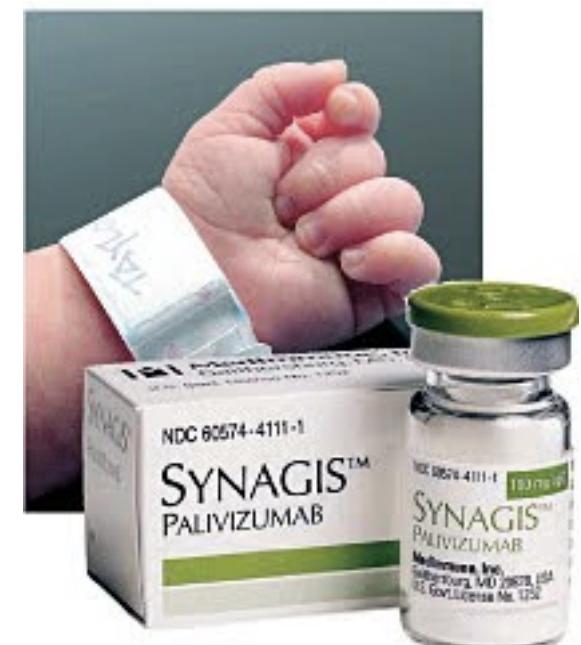
Seasonal patterns

- In temperate climates, RSV epidemics exhibit consistent seasonal patterns
- Most infections occur during winter months, whether wet or dry
- Outbreaks typically last 2–5 months
- In tropical climates, RSV is detected throughout the year, with less pronounced seasonal peaks
- The onset of RSV is typically associated with the rainy season.



Prophylaxis

- Immunoprophylaxis with the monoclonal antibody Palivizumab has proven effective in reducing the severity of symptoms
- However, it cannot prevent the onset of infection
 - very expensive
 - \$1416.48 for a 100mg vial
 - generally only administered to high-risk children.

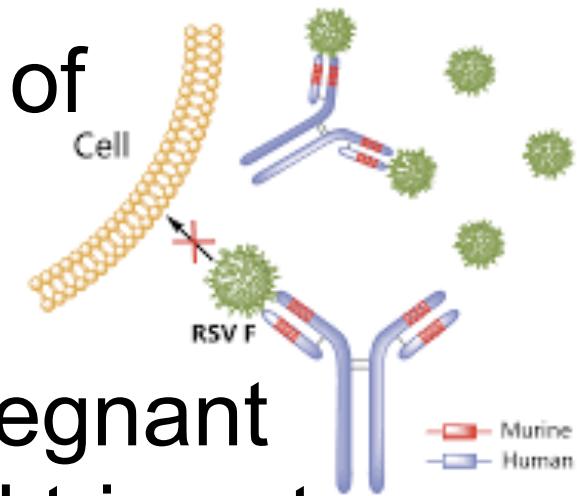


Vaccination

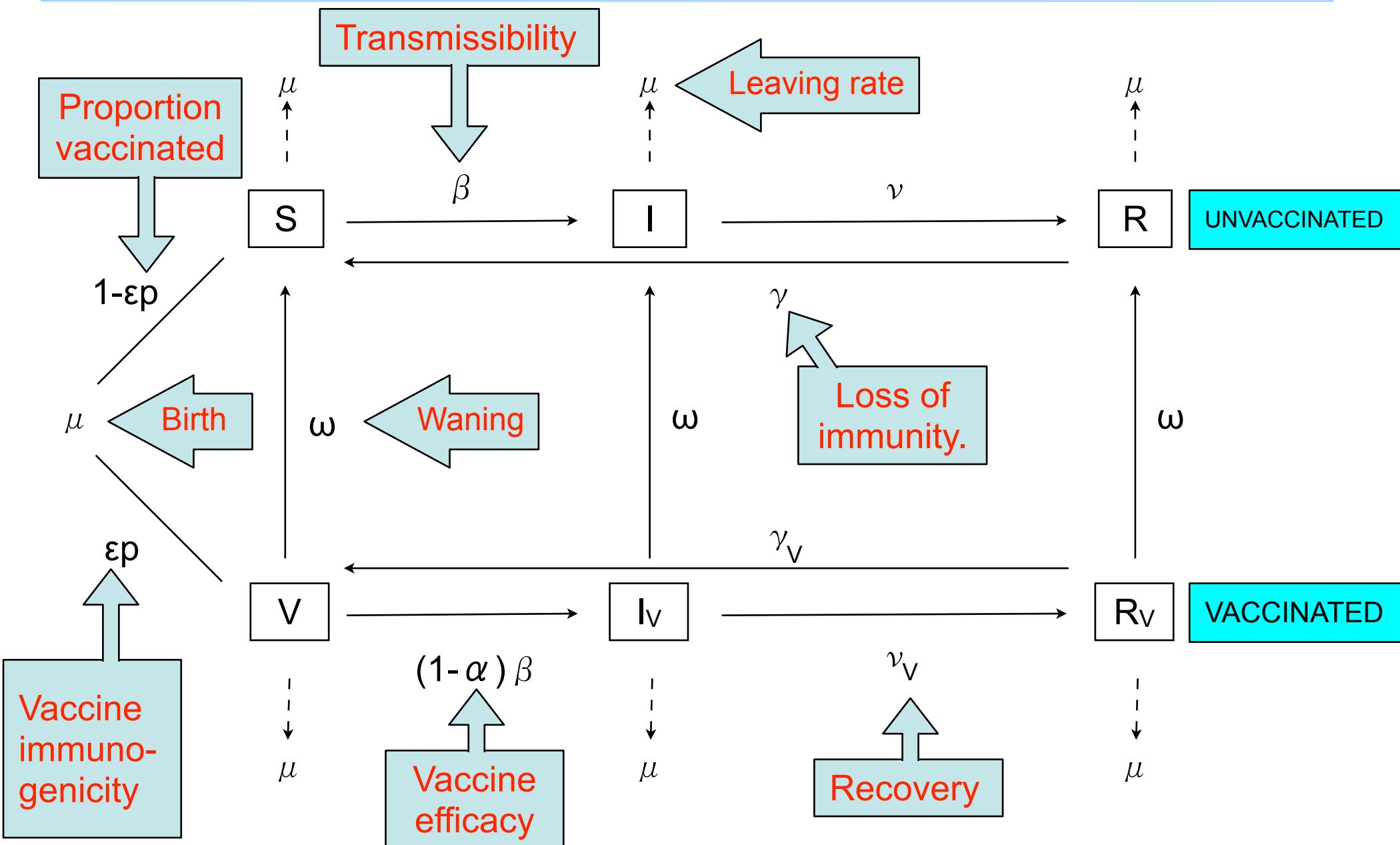
- Recent research has focused on the development of particle-based, subunit and vectored vaccines
- Several such vaccines are being evaluated in clinical trials
- Other vaccines are in pre-clinical development
- Live attenuated vaccines are also undergoing Phase I trials.

Model 1

- We extend an existing RSV model for a single age cohort to include vaccination
- We first assume a fixed proportion of individuals entering the model are temporarily immune to infection
- This reflects the situation where pregnant women are vaccinated in their third trimester
- Protective maternal antibodies are transferred placentally to the unborn infant
- This confers protection for the first few months of life.



Flow diagram



The continuous model

- The basic model with vaccination is

$$S' = \mu(1 - \epsilon p) - \mu S - \beta(t)S(I + I_V) + \gamma R + \omega V$$

$$I' = \beta(t)S(I + I_V) - \nu I - \mu I + \omega I_V$$

$$R' = \nu I - \mu R - \gamma R + \omega R_V$$

$$V' = \epsilon p \mu - \mu V - \beta_V(t)V(I + I_V) + \gamma_V R_V - \omega V$$

$$I_V' = \beta_V(t)V(I + I_V) - \nu_V I_V - \mu I_V - \omega I_V$$

$$R_V' = \nu_V I_V - \mu R_V - \gamma_V R_V - \omega R_V,$$

with $\beta(t) = \beta_0(1 + \beta_1 \cos(2\pi t + \varphi))$

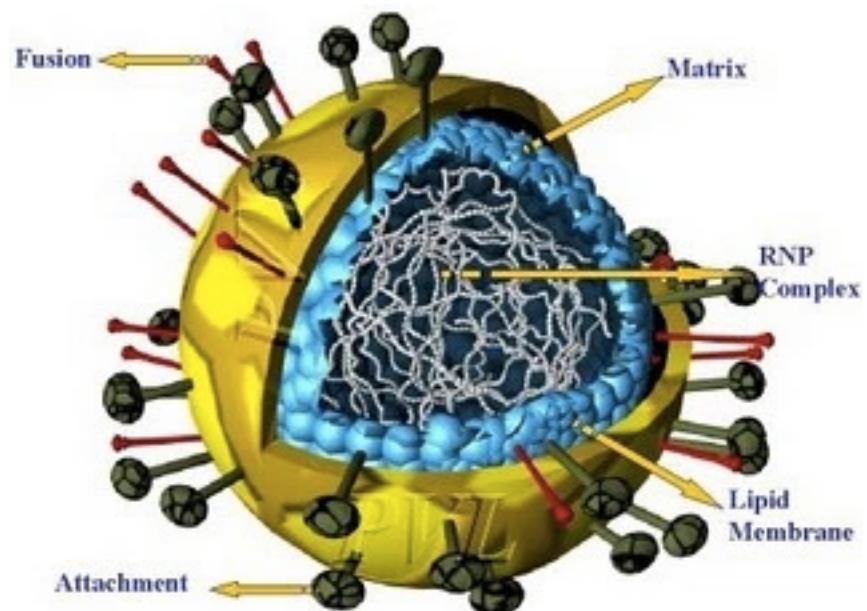
and $\beta_V(t) = (1 - \alpha)\beta(t)$

(α may possibly be negative).

*S=susceptible I, I_V =infected
R, R_V =recovered V=vaccinated
 μ =background death ϵ =efficacy
 p =coverage ω =waning
 β, β_V =transmissibility
 ν, ν_V =recovery γ, γ_V =loss of
immunity*

Key assumptions

- We assume
 - the leaving rate is unchanged across all classes
 - no disease-specific death
 - entry and leaving rates are scaled so the population is constant
 - transmissibility oscillates seasonally.



Constant transmission

- There is a DFE satisfying

$$(\bar{S}, \bar{I}, \bar{R}, \bar{V}, \bar{I}_V, \bar{R}_V) = \left(\frac{(1 - \epsilon p)\mu + \omega}{\mu + \omega}, 0, 0, \frac{\epsilon p \mu}{\mu + \omega}, 0, 0 \right)$$

- We can prove that this equilibrium is stable if

$$\lambda^2 + b_1 \lambda + c_1 = 0$$

has roots with negative real part, where

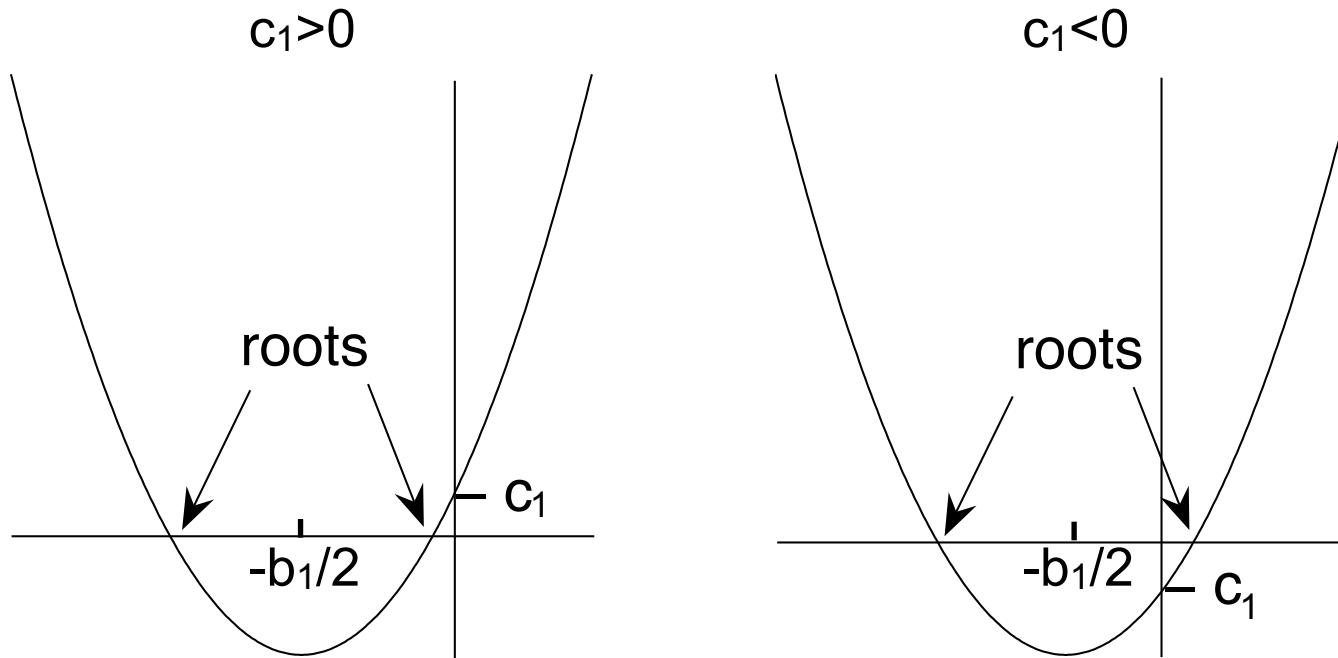
$$b_1 = -\beta \bar{S} + \mu + \nu - \beta_V \bar{V} + \nu_V + \mu + \omega$$

$$c_1 = (\beta \bar{S} - \mu - \nu)(\beta_V \bar{V} - \nu_V - \mu - \omega) - \beta_V \bar{V}(\beta \bar{S} + \omega)$$

$$= \beta \bar{S}(-\nu_V - \mu - \omega) - (\mu + \nu)(\beta_V \bar{V} - \nu_V - \mu - \omega) - \beta_V \bar{V} \omega.$$

*S=susceptible I=infected R=recovered
V=vaccinated susceptible
I_V=vaccinated infected R_V=vaccinated recovered
μ=background death
ε=efficacy p=coverage ω=waning*

Stability of eigenvalues



- If $b_1 > 0$, then c_1 is a proxy for the eigenvalues
- If $b_1 < 0$, then the DFE is unstable and c_1 is not a threshold.

b_1 =vertex
 c_1 =intercept

Complex eigenvalues?

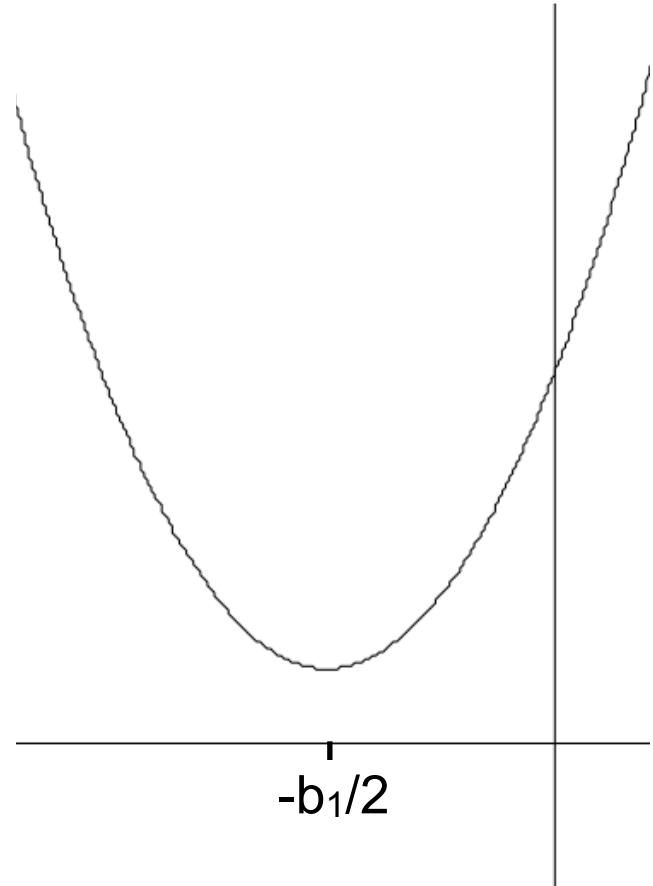
- If the roots are complex, then

$$\lambda = \frac{-b_1 \pm \sqrt{b_1^2 - 4c_1}}{2}$$

with the discriminant negative, and so

$$Re(\lambda) = -\frac{b_1}{2}$$

- It follows that stability in this case occurs if and only if $b_1 > 0$.



$b_1 = \text{vertex}$
 $c_1 = \text{intercept}$

Basic reproduction number

- Rearranging the constant term leads to

$$R_0 = \frac{\beta \bar{S}(\nu_V + \mu + \omega) + \beta_V \bar{V}(\mu + \nu + \omega)}{(\mu + \nu)(\mu + \nu_V + \omega)}$$

- If $c_1=0$ and $b_1>0$, then we have a bifurcation with the property that the DFE is stable if $R_0<1$ and unstable if $R_0>1$
(as desired)
- However, it possible that when $c_1=0$, $b_1<0$
- In this case, R_0 is not a threshold, and the disease can persist if $R_0<1$.

*S=susceptible V=vaccinated
 μ =background death ω =waning
 β, β_V =transmissibility
 ν, ν_V =recovery*

Positive vertex

- When $c_1=0$, we have

$$b_1 \Big|_{c_1=0} = \frac{1}{\nu_V + \mu + \omega} [\beta_V \bar{V} (\nu - \nu_V) + (\nu_V + \mu + \omega)^2]$$

- Note that if $\nu=\nu_V$ (i.e., vaccination does not affect recovery) then $b_1>0$
- However, we expect that vaccinated individuals will recover faster than unvaccinated individuals
- Thus $\nu_V>\nu$
- It follows that b_1 could be negative.

V =vaccinated b_1 =vertex
 c_1 =intercept
 μ =background death
 ω =waning
 β_V =transmissibility
 ν, ν_V =recovery

A possible turning point?

- If $\nu_V \rightarrow \infty$, this is equivalent to vaccinated individuals recovering instantaneously
- In this case,

$$\begin{aligned}\lim_{\nu_V \rightarrow \infty} b_1 &= \lim_{\nu_V \rightarrow \infty} \frac{\beta_V \bar{V}(\nu - \nu_V)}{\omega + \mu + \nu_V} + \omega + \mu + \nu_V \\ &= -\beta_V \bar{V} + \infty > 0\end{aligned}$$

- Defining $f(\nu_V) = \frac{\beta_V \bar{V}(\nu - \nu_V) + (\omega + \mu + \nu_V)^2}{\omega + \mu + \nu_V}$,

we have $f(\nu) > 0$ and $f(\infty) > 0$

- Does f have a local minimum?
- If so, could it be negative?

V =vaccinated b_1 =vertex
 μ =background death
 ω =waning
 β_V =transmissibility
 ν, ν_V =recovery

The turning point

- Differentiating, we have

$$f'(\nu_V) = \frac{(\omega + \mu + \nu_V)^2 - \beta_V \bar{V}[\omega + \mu + \nu]}{(\omega + \mu + \nu_V)^2}$$

- It follows that the turning point is

$$\nu_V^* = \sqrt{\beta_V \bar{V}(\omega + \mu + \nu)} - \omega - \mu$$

- There are three requirements for this to be meaningful:

1. $\nu_V^* > \nu$
2. $f(\nu_V^*) < 0$
3. ν_V^* is a local minimum.

V =vaccinated

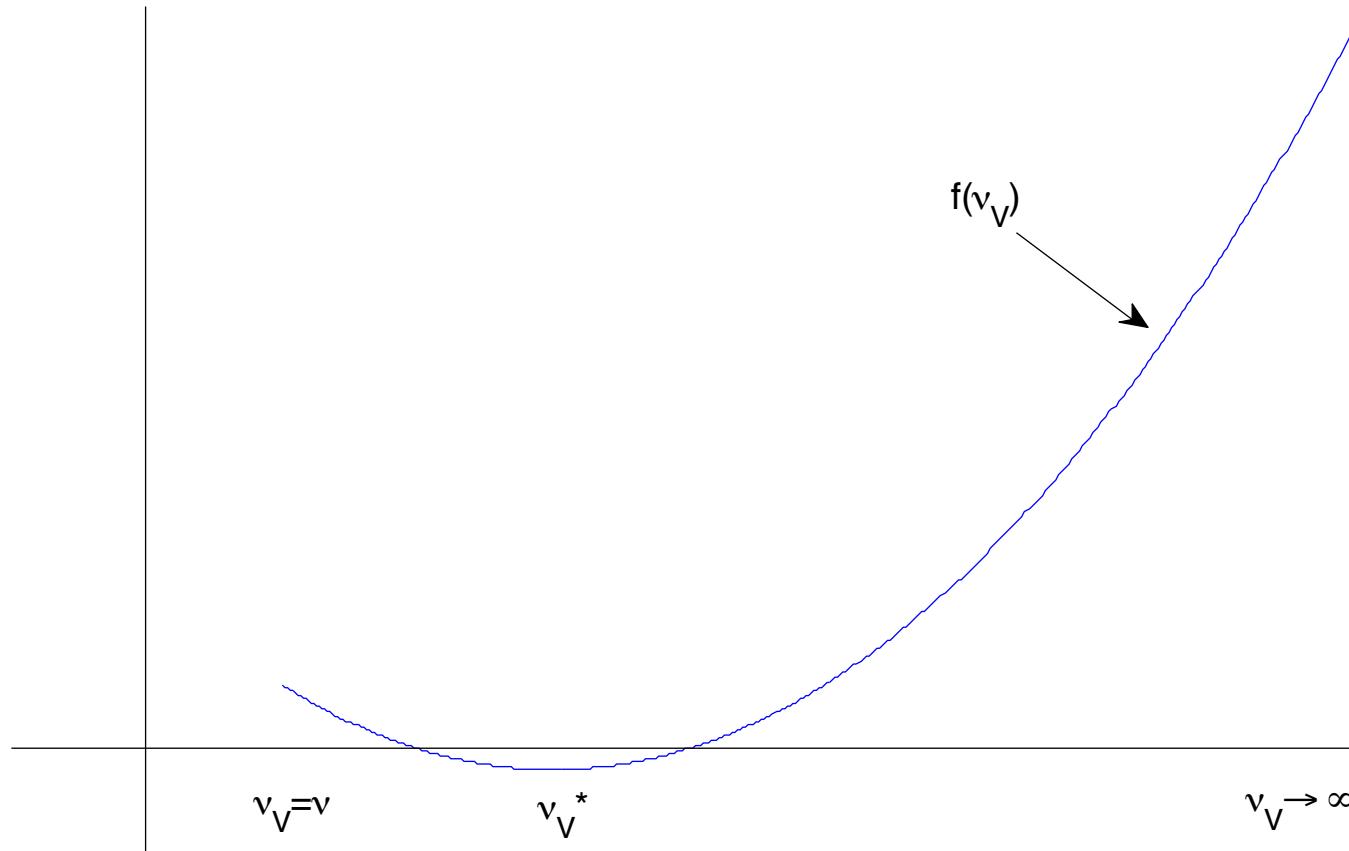
μ =background death

ω =waning

β_V =transmissibility

ν, ν_V =recovery

Potential form of $f(v_V)$

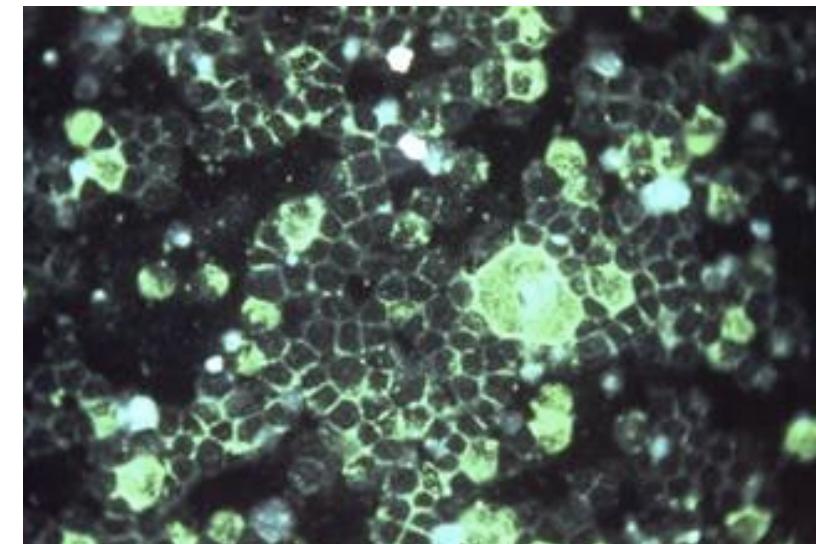


- We can prove that the turning point is a local minimum whenever it exists.

*f=vertex
v, v_V=recovery*

Regular vaccinations

- We now refine the continuous model
- Vaccination may not occur before birth
- It may also be administered at regular times
 - eg in schools or daycare centres
- We model a vaccine that reduces the susceptible population by a fixed proportion r
- This is described by a series of non-autonomous impulsive differential equations.



r=coverage

The impulsive model

$$\begin{aligned} S' &= \mu - \mu S - \beta(t)S(I + I_V) + \gamma R + \omega V & t \neq t_k \\ I' &= \beta(t)S(I + I_V) - \nu I - \mu I + \omega I_V & t \neq t_k \\ R' &= \nu I - \mu R - \gamma R + \omega R_V & t \neq t_k \\ V' &= -\mu V - \beta_V(t)V(I + I_V) + \gamma_V R_V - \omega V & t \neq t_k \\ I'_V &= \beta_V V(I + I_V) - \nu_V I_V - \mu I_V - \omega I_V & t \neq t_k \\ R'_V &= \nu_V I_V - \mu R_V - \gamma_V R_V - \omega R_V & t \neq t_k \\ \Delta S &= -rS & t = t_k \\ \Delta V &= rS & t = t_k, \end{aligned}$$

where r is the coverage
and t_k are the vaccination times.

S =susceptible I, I_V =infected
 R, R_V =recovered V =vaccinated
 μ =background death ω =waning
 β, β_V =transmissibility
 ν, ν_V =recovery γ, γ_V =loss of
immunity

Susceptible individuals

- Assuming transmission is constant, we can prove that solutions are bounded below by a stable impulsive periodic orbit with endpoints

$$S_{\infty}^- = \frac{\mu (1 - e^{-(\mu+\beta)\tau})}{(\mu + \beta) (1 - (1 - r)e^{-(\mu+\beta)\tau})}$$

$$S_{\infty}^+ = \frac{\mu(1 - r) (1 - e^{-(\mu+\beta)\tau})}{(\mu + \beta) (1 - (1 - r)e^{-(\mu+\beta)\tau})}$$

- These correspond to the local maximum and minimum values for the unvaccinated susceptibles after a long time
- Note in particular that $\lim_{\tau \rightarrow 0} S_{\infty}^- = 0$.

S=susceptible μ =background death β =transmissibility r =coverage τ =period

Vaccinated individuals

- We can prove that vaccinated individuals are bounded below by the impulsive periodic orbit with endpoints

$$V_{\infty}^- = \frac{r\mu (1 - e^{-(\mu+\beta)\tau}) e^{-(\mu+\beta+\omega)\tau}}{(\mu + \beta) (1 - (1 - r)e^{-(\mu+\beta)\tau}) (1 - e^{-(\mu+\beta+\omega)\tau})}$$

$$V_{\infty}^+ = \frac{r\mu (1 - e^{-(\mu+\beta)\tau})}{(\mu + \beta) (1 - (1 - r)e^{-(\mu+\beta)\tau}) (1 - e^{-(\mu+\beta+\omega)\tau})}.$$

V=vaccinated μ =background death β =transmissibility ω =waning r =coverage τ =period

Infected individuals

- Assuming infected vaccinated individuals are negligible, we can prove that

$$I' \leq \frac{\beta\mu (1 - e^{-(\mu+\beta)\tau})}{(\mu + \beta) (1 - (1 - r)e^{-(\mu+\beta)\tau})} I - \nu I - \mu I$$

- We thus define a new quantity, the *impulsive reproduction number*

$$T_0 = \frac{\beta\mu (1 - e^{-(\mu+\beta)\tau})}{(\nu + \mu)(\mu + \beta) (1 - (1 - r)e^{-(\mu+\beta)\tau})},$$

which has the condition that the disease will be controlled if $T_0 < 1$.

*I=infected μ =background death
 β =transmissibility ν =recovery
 r =coverage τ =period*

Impulsive reproduction number

- From the condition $T_0=1$, we can define the maximal period as

$$\hat{\tau} = \frac{1}{\mu + \beta} \ln \frac{(1 - r)(\nu + \mu)(\mu + \beta) - \beta\mu}{(\nu + \mu)(\mu + \beta) - \beta\mu}$$

- This is defined only if

$$r < r^* \equiv 1 - \frac{\beta\mu}{(\nu + \mu)(\mu + \beta)}$$

- We can show that T_0 is decreasing as r increases, for $r < r^*$

- the disease can then be controlled if $\tau < \hat{\tau}$

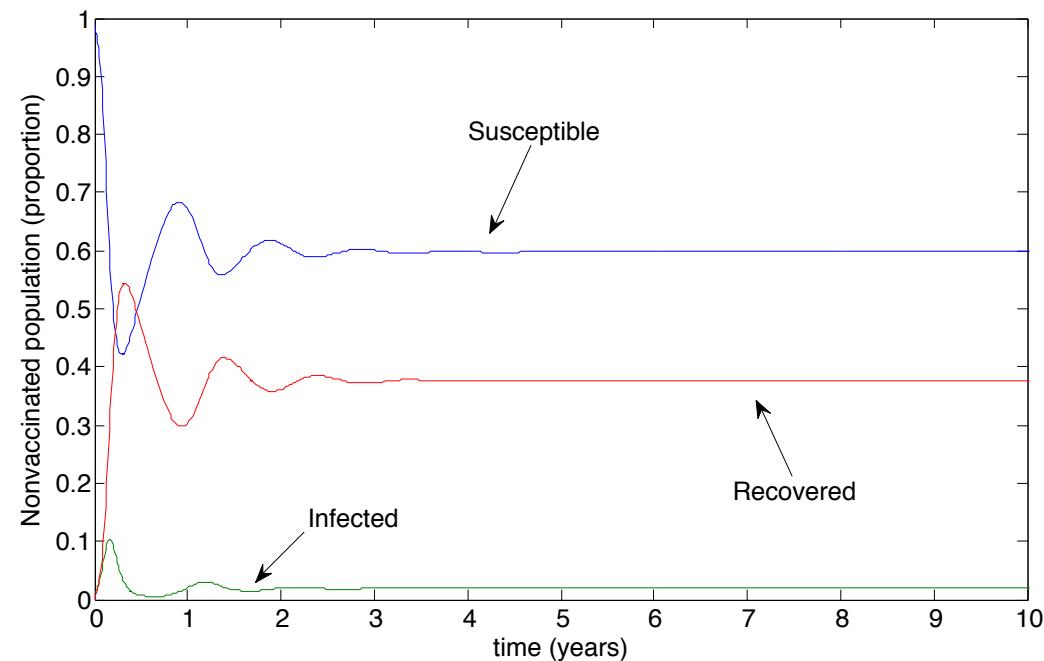
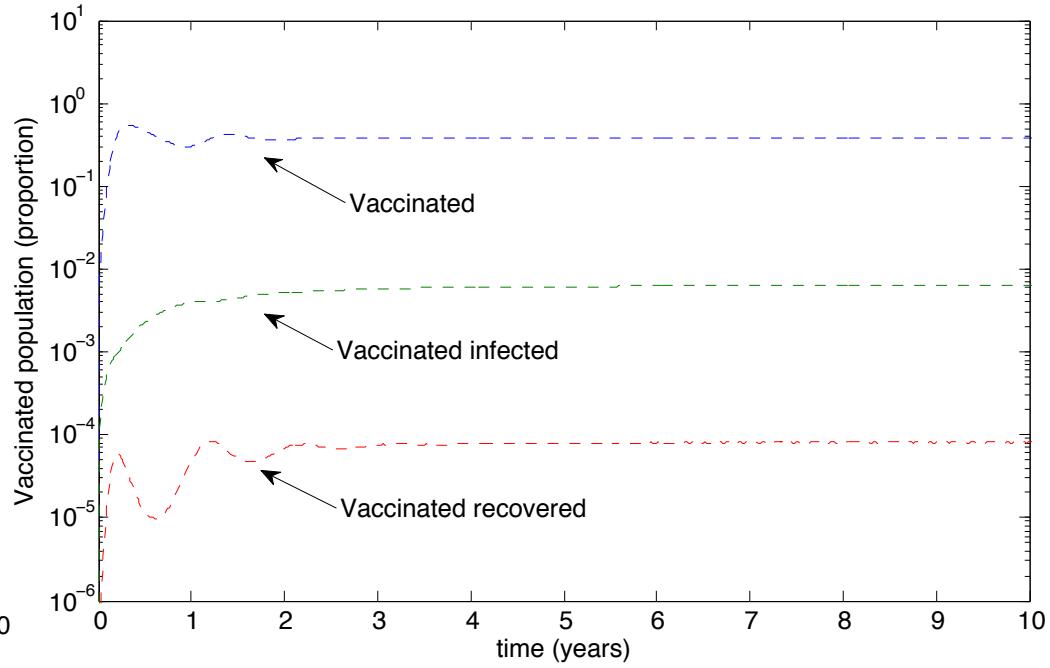
- For $r > r^*$, $T_0 < 1$ and the disease is always controlled.

*T₀=impulsive reproduction #
μ=background death
β=transmissibility ν=recovery
r=coverage τ=period*

Summary of theoretical results

- High coverage can thus control the disease
- If coverage is limited, then sufficiently frequent vaccinations can also achieve control
- Note that the impulsive reproduction number is conditional.

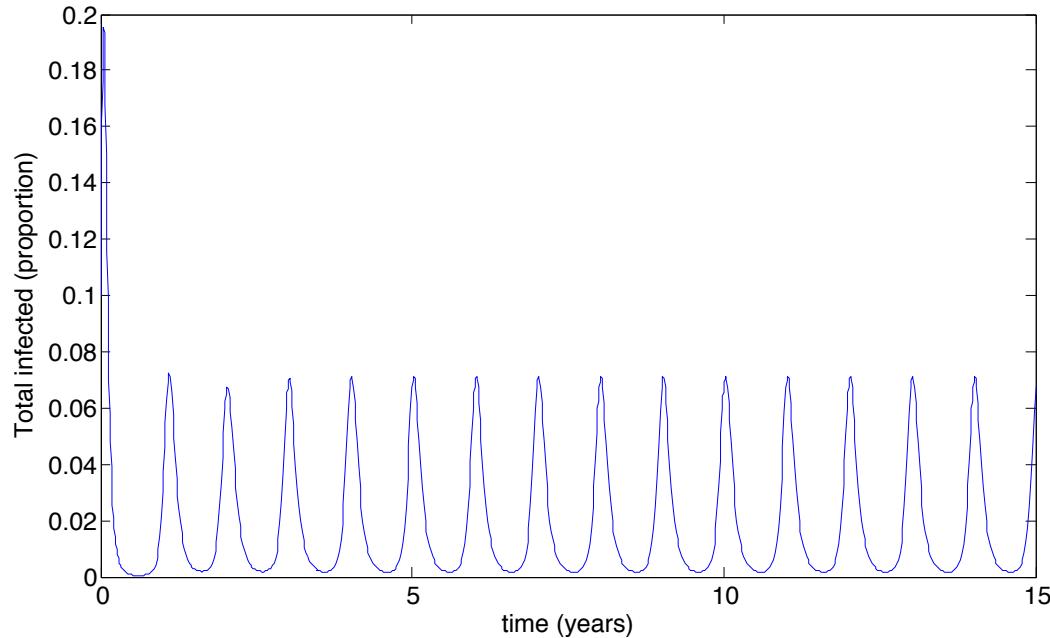
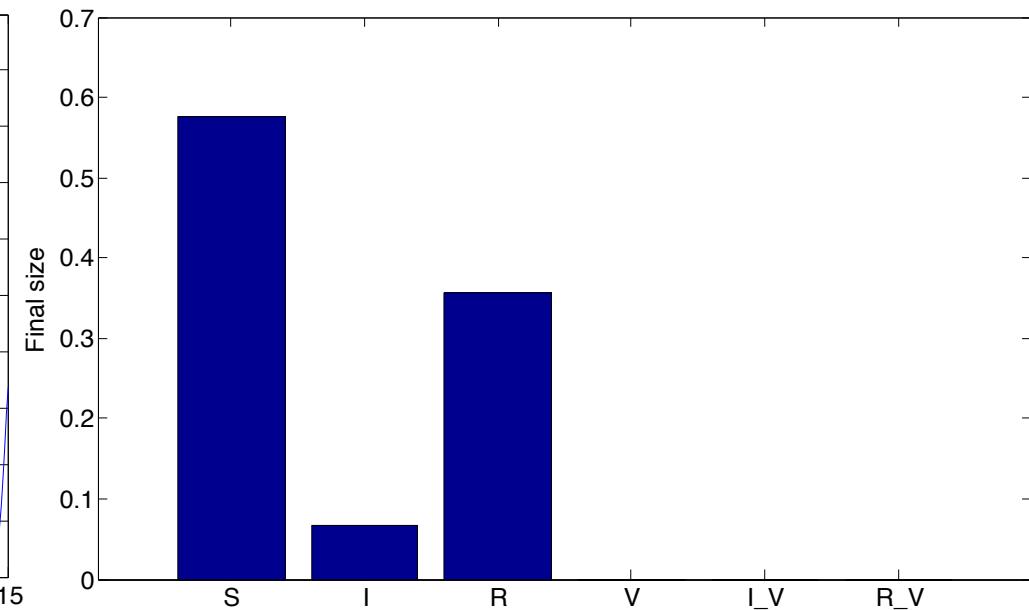
Continuous model, constant transmission



$\mu=1/70$, $\omega=0.1$, $\beta=50$, $\beta_V=0.5\beta$, $\epsilon=0.9$, $p=0.5$,
 $\nu=36$, $\nu_V=1.2\nu$, $\gamma=1.8$, $\gamma_V=0.8\gamma$.

μ =background death ω =waning
 β, β_V =transmissibility ϵ =efficacy
 p =coverage ν, ν_V =recovery
 γ, γ_V =loss of immunity

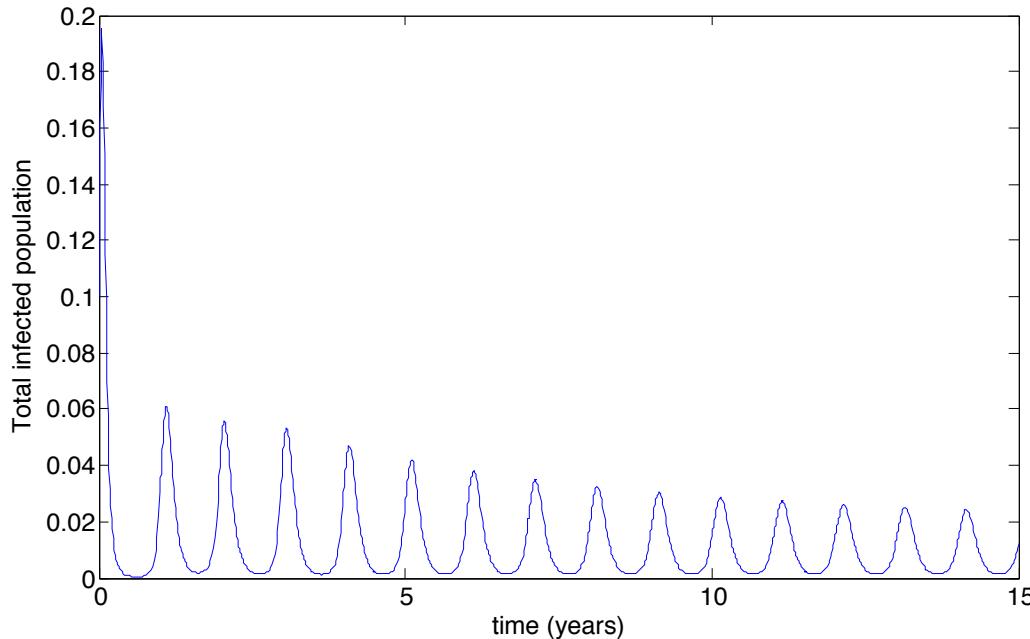
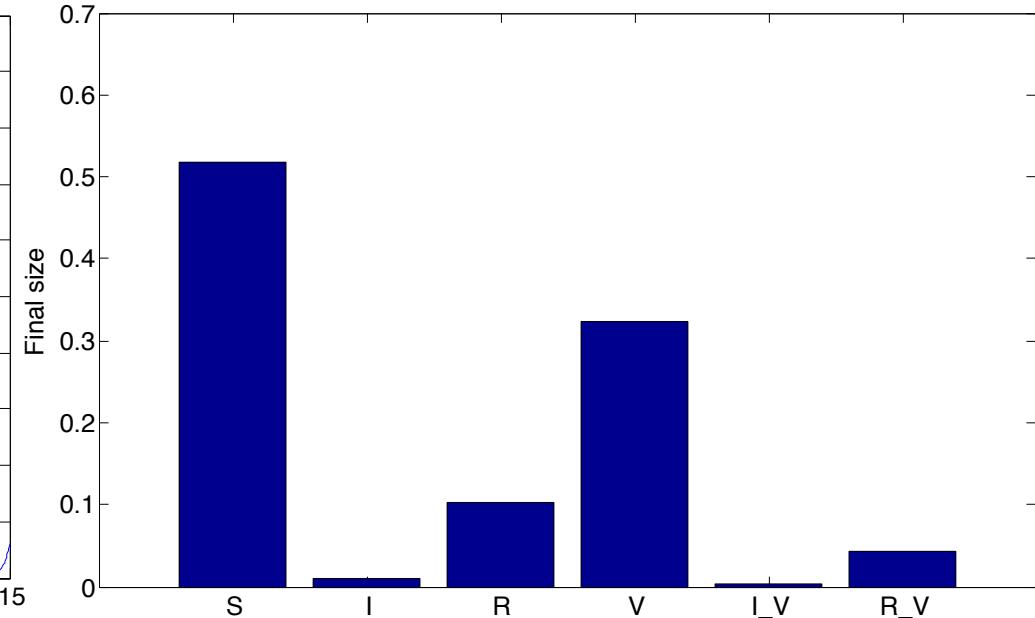
Impulsive model, no vaccine



$\mu=1/70$, $\omega=0.1$, $b_0=60$, $b_1=0.16$, $\varphi=0.15$,
 $\beta_V=0.5\beta$, $\nu=36$, $\nu_V=1.2\nu$, $\gamma=1.8$, $\gamma_V=0.8\gamma$,
 $r=0$.

μ =background death ω =waning
 b_0 =average transmissibility
 b_1 =seasonal amplitude φ =phase
 β_V =transmissibility ν, ν_V =recovery
 γ, γ_V =loss of immunity, r =coverage

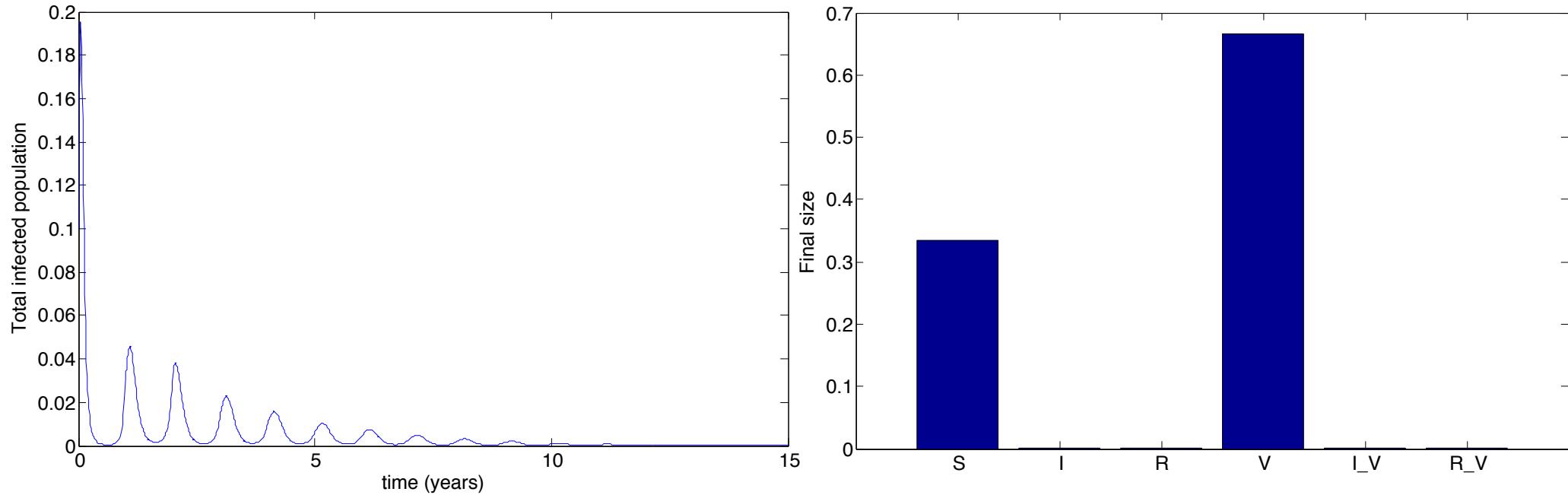
Impulsive model, 10% vaccination



$\mu=1/70$, $\omega=0.1$, $b_0=60$, $b_1=0.16$, $\varphi=0.15$,
 $\beta_V=0.5\beta$, $\nu=36$, $\nu_V=1.2\nu$, $\gamma=1.8$, $\gamma_V=0.8\gamma$,
 $r=0.1$.

μ =background death ω =waning
 b_0 =average transmissibility
 b_1 =seasonal amplitude φ =phase
 β_V =transmissibility ν, ν_V =recovery
 γ, γ_V =loss of immunity, r =coverage

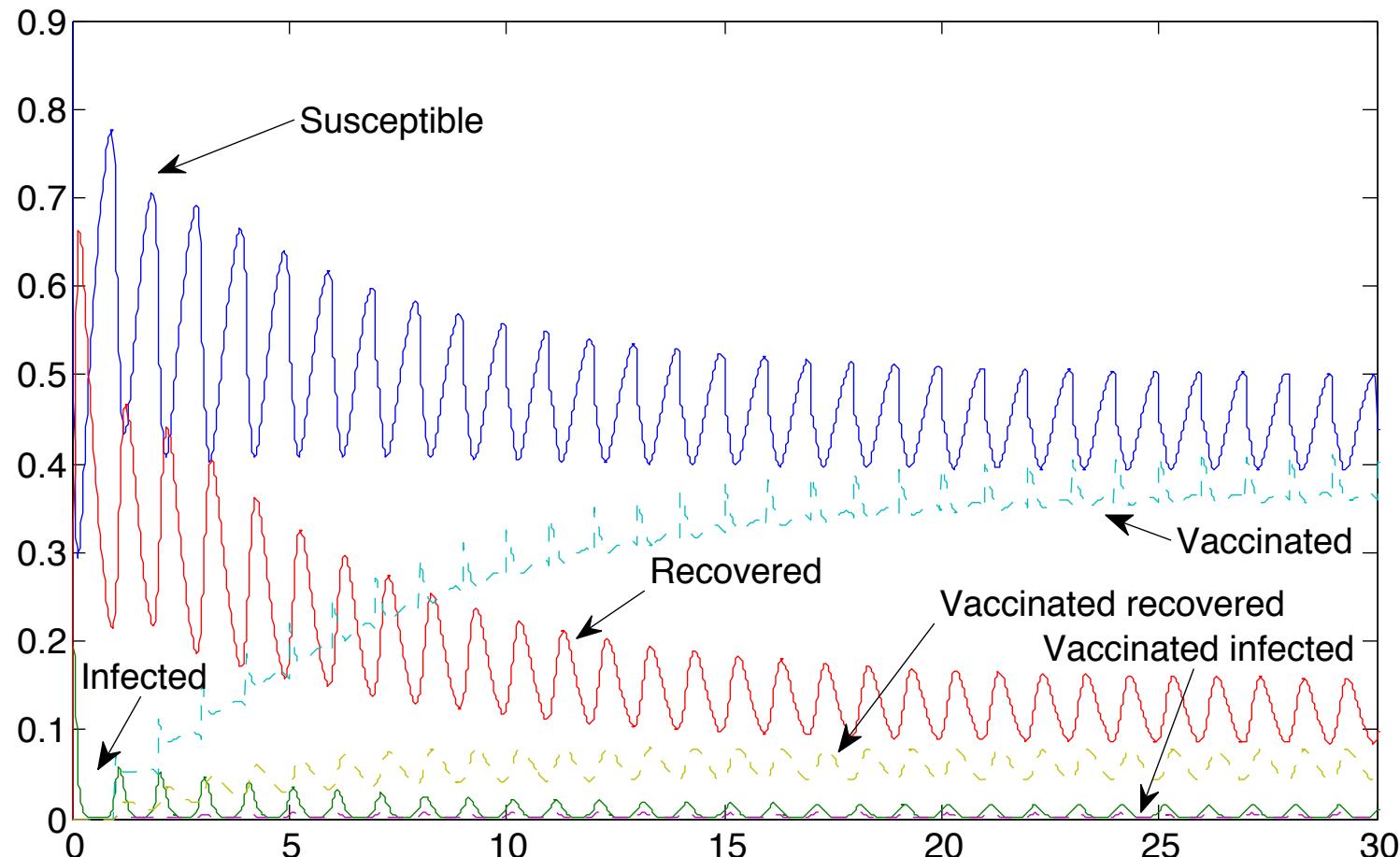
Impulsive model, 25% vaccination



$\mu=1/70$, $\omega=0.1$, $b_0=60$, $b_1=0.16$, $\varphi=0.15$,
 $\beta_V=0.5\beta$, $\nu=36$, $\nu_V=1.2\nu$, $\gamma=1.8$, $\gamma_V=0.8\gamma$,
 $r=0.25$.

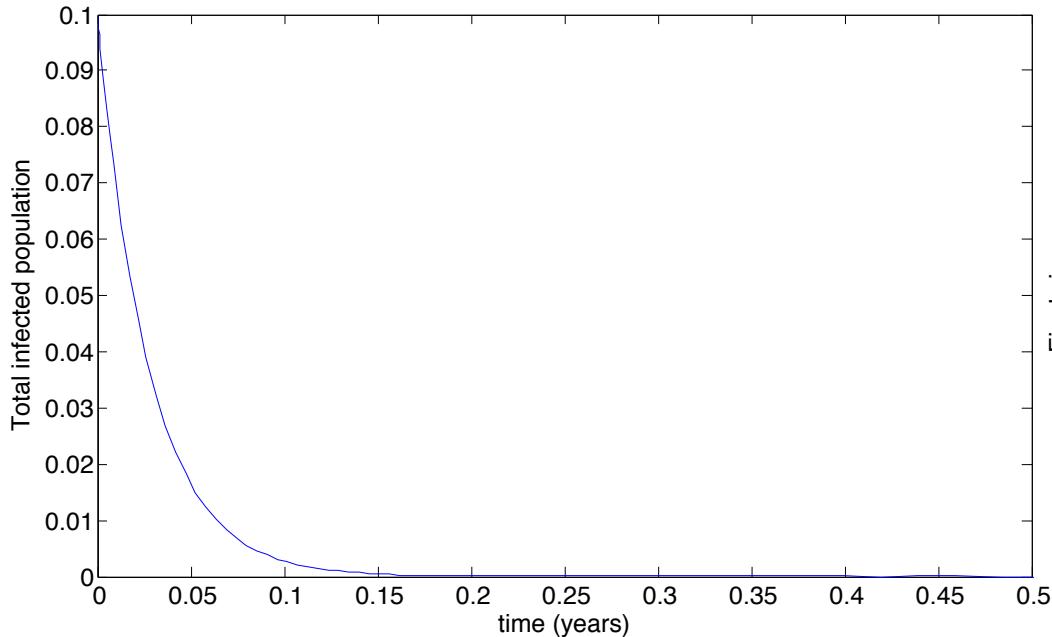
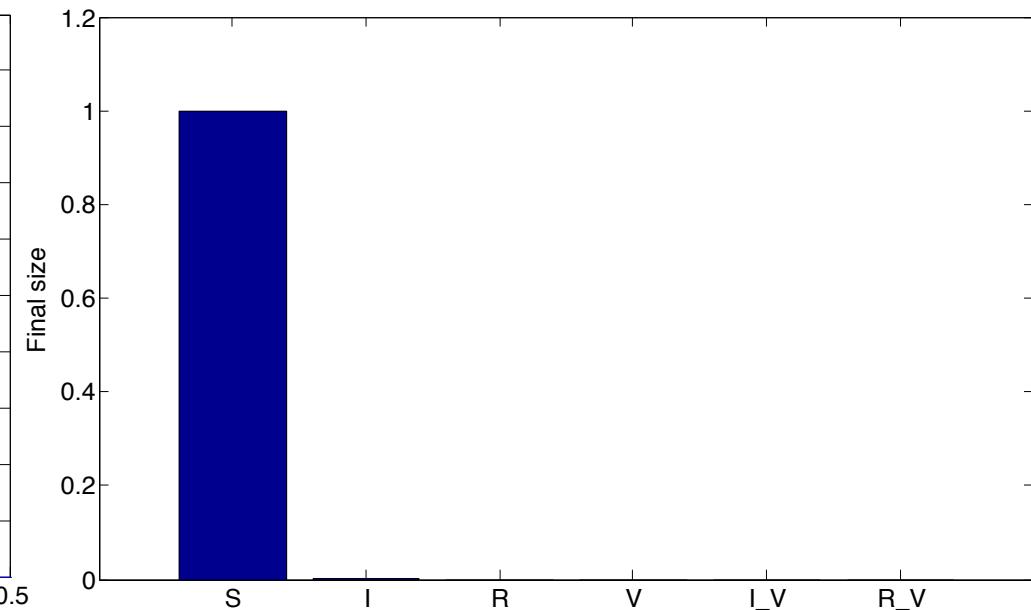
μ =background death ω =waning
 b_0 =average transmissibility
 b_1 =seasonal amplitude φ =phase
 β_V =transmissibility ν, ν_V =recovery
 γ, γ_V =loss of immunity, r =coverage

Population dynamics



- 10% vaccination
- Note the low-level oscillations in both infected classes.

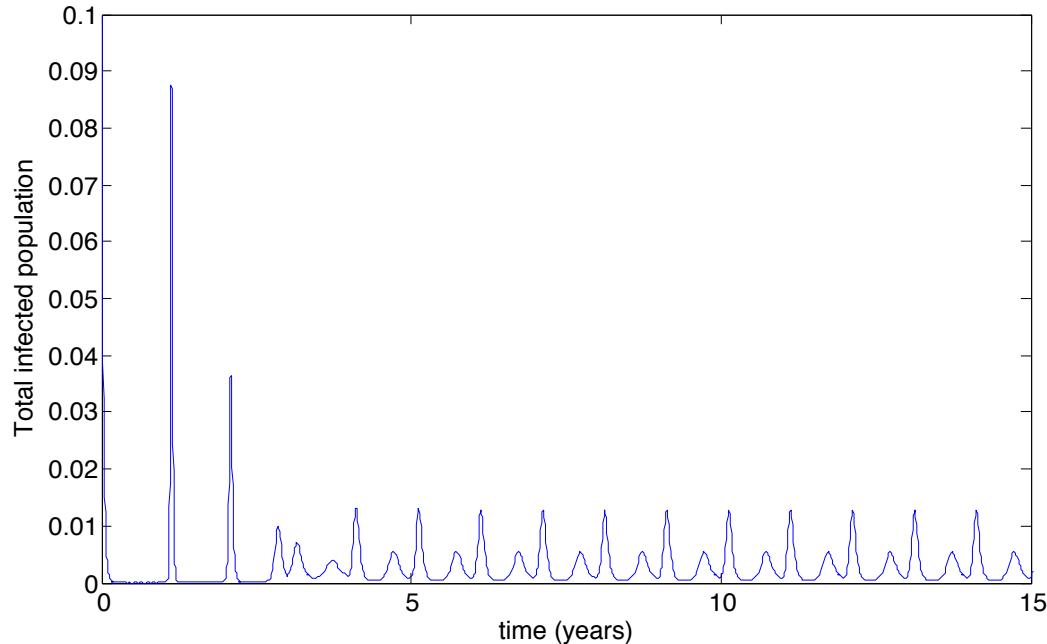
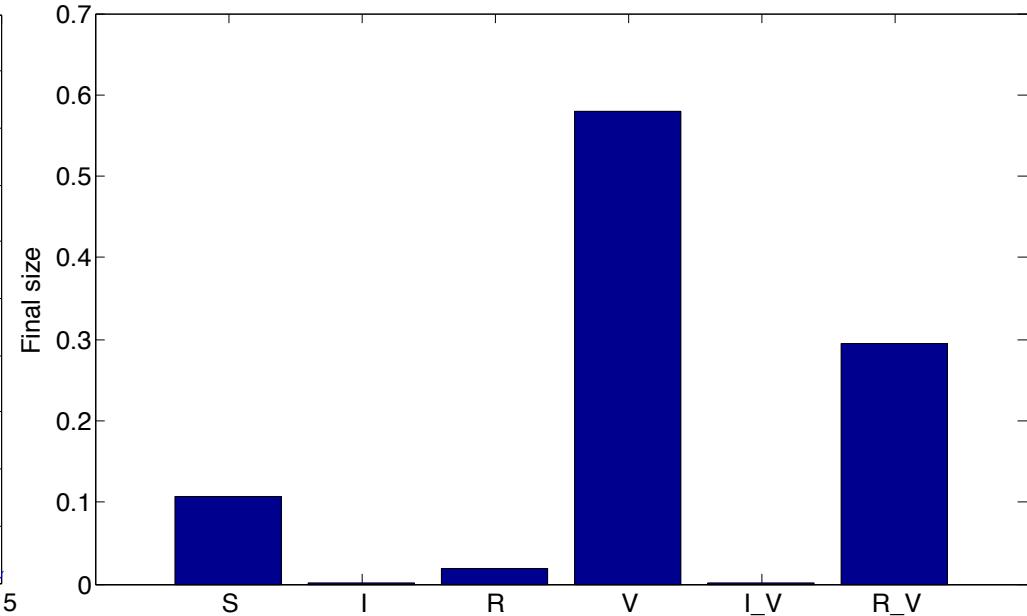
Extreme parameters, no vaccine



$\mu=1/70$, $\omega=0.1$, $\beta=0.03$, $\beta_V=300$, $\nu=36$, $\nu_V=177$,
 $\gamma=1.8$, $\gamma_V=0.8\gamma$, $r=0$.

μ =background death ω =waning
 b_0 =average transmissibility
 b_1 =seasonal amplitude φ =phase
 β_V =transmissibility ν, ν_V =recovery
 γ, γ_V =loss of immunity, r =coverage

Extreme parameters, 100% vaccination



$\mu=1/70$, $\omega=0.1$, $\beta=0.03$, $\beta_V=300$, $\nu=36$, $\nu_V=177$,
 $\gamma=1.8$, $\gamma_V=0.8\gamma$, $r=1$.

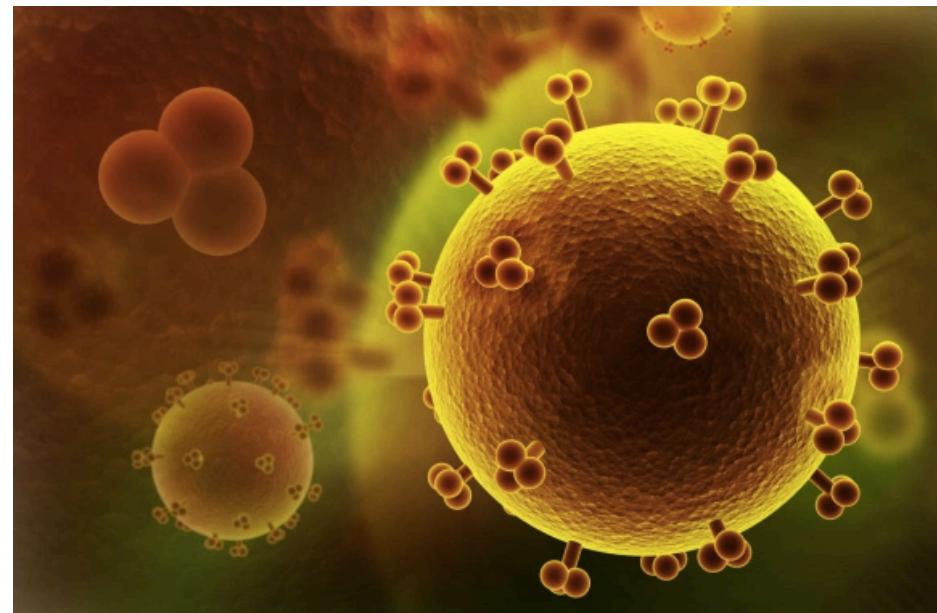
μ =background death ω =waning
 b_0 =average transmissibility
 b_1 =seasonal amplitude φ =phase
 β_V =transmissibility ν, ν_V =recovery
 γ, γ_V =loss of immunity, r =coverage

Unexpected infection spikes

- We used extreme vaccination parameters
- Transmission due to vaccinated individuals was extremely high
- But recovery was fast
- This allowed low-level infection spikes to occur in infected populations
- Note that this is not a backward bifurcation
- Rather, it is a destabilisation of the DFE.

Summary

- We considered two forms of vaccination:
 - single administration before infection
 - e.g., a maternal vaccine
 - periodic vaccination
- Using impulsive differential equations, we were able to formulate conditions on the period and strength of vaccination to allow for disease control.



Impulsive reproduction number

- We also defined a new quantity, the impulsive reproduction number T_0
- This is a sufficient (but not necessary) condition that ensures eradication if $T_0 < 1$
- In this case, the infected population is contracting within each impulsive cycle
- The result is eventual eradication of the infection.



T_0 =impulsive reproduction number

Constant vs seasonal transmission

- We assumed constant transmission for this derivation
- However, numerical simulations were performed using seasonal oscillations and demonstrated comparative results
- In particular, if the strength of periodic vaccination r is sufficiently high, the disease will be controlled
- If not, control can still be achieved if the vaccine is given with sufficient frequency.

Infection spikes

- The infection spikes occur when vaccine-induced transmission is extremely high but recovery is extremely fast
- They occur even when the transmission function is not oscillating
- They are unlikely to occur in reality with the parameters we chose
- Nevertheless, we have shown proof-of-concept that such an outcome is possible.

Limitations

We assumed:

- The time to administer the vaccine was significantly shorter than the time between vaccinations
- A well-mixed population
- A single age cohort
- A population of fixed size
- Constant birth and death
- Maternal vaccination in the first model.

Conclusions

- A vaccine that targets RSV infection has the potential to significantly reduce the overall prevalence of the disease
- Long-term, periodic vaccination can theoretically control the disease, but coverage needs to be high or administration sufficiently frequent
- Extreme parameters have the potential to induce unexpected infection spikes
- Care should be taken to understand long-term effects when introducing new vaccines.

Key reference

- R.J. Smith?, A.B. Hogan, G.N. Mercer *Unexpected infection spikes in a model of Respiratory Syncytial Virus vaccination* (Vaccines, 2017, 5:12).

<http://mysite.science.uottawa.ca/rsmith43>

