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Respiratory Syncytial Virus (RSV)

• The main cause of acute 
lower respiratory infections in 
adults and young children

• Almost all children have 
been infected by age 2

• About 0.5–2% of infants 
require hospitalisation 
due to infection

• In 2005, 33.8 million new 
episodes of RSV occurred in 
children under 5 worldwide.

Etiology of acute 
respiratory infections in 

children.
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Symptoms
• Mild symptoms:

– cough
– runny nose
– sore throat
– earache
– fever

• Major symptoms:
– difficulty 

breathing
– blue skin due to 

lack of oxygen
– bronchiolitis
– pneumonia.
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Burden of RSV

• Highest number of observed cases occurs in 
children aged six weeks to six months

• Morbidity occurs in <0.1% of cases
• Immunity is short-lasting
• Reinfection is common
• Hospitalisation costs are substantial
• Infection can occur throughout adult life

– often a cause of mortality in the elderly
• RSV is a significant economic and 

healthcare system burden.
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Seasonal patterns

• In temperate climates, RSV epidemics 
exhibit consistent seasonal patterns

• Most infections occur during winter 
months, whether wet or dry

• Outbreaks typically last 2–5 months
• In tropical climates, RSV is detected 

throughout the year, with less 
pronounced seasonal peaks

• The onset of RSV is typically 
associated with the rainy season.
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Prophylaxis

• Immunoprophylaxis with the monoclonal 
antibody Palivizumab has proven effective in 
reducing the severity of symptoms

• However, it cannot prevent the onset of 
infection
– very expensive 
– $1416.48 for a 100mg vial
– generally only administered to 

high-risk children.



Vaccination

• Recent research has focused on the 
development of particle-based, subunit and 
vectored vaccines



Vaccination

• Recent research has focused on the 
development of particle-based, subunit and 
vectored vaccines

• Several such vaccines are 
being evaluated in clinical trials



Vaccination

• Recent research has focused on the 
development of particle-based, subunit and 
vectored vaccines

• Several such vaccines are 
being evaluated in clinical trials

• Other vaccines are in 
pre-clinical development



Vaccination

• Recent research has focused on the 
development of particle-based, subunit and 
vectored vaccines

• Several such vaccines are 
being evaluated in clinical trials

• Other vaccines are in 
pre-clinical development

• Live attenuated vaccines are 
also undergoing Phase I trials.
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Model 1
• We extend an existing RSV model for a single 

age cohort to include vaccination
• We first assume a fixed proportion of 

individuals entering the model are 
temporarily immune to infection

• This reflects the situation where pregnant 
women are vaccinated in their third trimester

• Protective maternal antibodies are transferred 
placentally to the unborn infant

• This confers protection for the first few 
months of life.
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S0 = µ(1� ✏p)� µS � �(t)S(I + IV ) + �R+ !V

I 0 = �(t)S(I + IV )� ⌫I � µI + !IV

R0 = ⌫I � µR� �R+ !RV

V 0 = ✏pµ� µV � �V (t)V (I + IV ) + �V RV � !V

I 0V = �V (t)V (I + IV )� ⌫V IV � µIV � !IV

R0
V = ⌫V IV � µRV � �V RV � !RV ,

S=susceptible I,IV=infected 
R,RV=recovered V=vaccinated 
µ=background death ε=efficacy 
p=coverage ω=waning 
β,βV=transmissibility 
ν,νV=recovery γ,γV=loss of 
immunity 
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• The basic model with vaccination is

with β(t)= β0(1+β1cos(2πt+φ))
and βV(t)=(1-α)β(t)
(α may possibly be negative).

The continuous model

S0 = µ(1� ✏p)� µS � �(t)S(I + IV ) + �R+ !V

I 0 = �(t)S(I + IV )� ⌫I � µI + !IV

R0 = ⌫I � µR� �R+ !RV

V 0 = ✏pµ� µV � �V (t)V (I + IV ) + �V RV � !V

I 0V = �V (t)V (I + IV )� ⌫V IV � µIV � !IV

R0
V = ⌫V IV � µRV � �V RV � !RV ,

S=susceptible I,IV=infected 
R,RV=recovered V=vaccinated 
µ=background death ε=efficacy 
p=coverage ω=waning 
β,βV=transmissibility 
ν,νV=recovery γ,γV=loss of 
immunity 
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Key assumptions

• We assume 
– the leaving rate is unchanged across all classes
– no disease-specific death
– entry and leaving rates are scaled so 

the population is constant
– transmissibility 

oscillates seasonally.
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✓
(1� ✏p)µ+ !

µ+ !
, 0, 0,

✏pµ

µ+ !
, 0, 0

◆

S=susceptible I=infected R=recovered 
V=vaccinated susceptible 
IV=vaccinated infected RV=vaccinated 
recovered µ=background death 
ε=efficacy p=coverage ω=waning



Constant transmission

• There is a DFE satisfying

• We can prove that this equilibrium is stable if
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Constant transmission

• There is a DFE satisfying

• We can prove that this equilibrium is stable if

has roots with negative real part, where

(S̄, Ī, R̄, V̄ , ĪV , R̄V ) =

✓
(1� ✏p)µ+ !

µ+ !
, 0, 0,

✏pµ

µ+ !
, 0, 0

◆

�2 + b1�+ c1 = 0

b1 = ��S̄ + µ+ ⌫ � �V V̄ + ⌫V + µ+ !

c1 = (�S̄ � µ� ⌫)(�V V̄ � ⌫V � µ� !)� �V V̄ (�S̄ + !)

= �S̄(�⌫V � µ� !)� (µ+ ⌫)(�V V̄ � ⌫V � µ� !)� �V V̄ !.

S=susceptible I=infected R=recovered 
V=vaccinated susceptible 
IV=vaccinated infected RV=vaccinated 
recovered µ=background death 
ε=efficacy p=coverage ω=waning
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Stability of eigenvalues

• If b1>0, then c1 is a proxy for the eigenvalues
• If b1<0, then the DFE is unstable and c1 is 

not a threshold.
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Complex eigenvalues?
• If the roots are complex, 

then 

with the discriminant 
negative, and so

• It follows that stability in 
this case occurs if and 
only if b1>0.

� =
�b1 ±

p
b21 � 4c1
2

Re(�) = �b1
2

-b1/2

b1=vertex 
c1=intercept
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Basic reproduction number

• Rearranging the constant term leads to

• If c1=0 and b1>0, then we have a bifurcation 
with the property that the DFE is stable if 
R0<1 and unstable if R0>1 
(as desired)

• However, it possible that when c1=0, b1<0
• In this case, R0 is not a threshold, and the 

disease can persist if R0<1.

R0 =
�S̄(⌫V + µ+ !) + �V V̄ (µ+ ⌫ + !)

(µ+ ⌫)(µ+ ⌫V + !)

S=susceptible V=vaccinated 
µ=background death ω=waning 
β,βV=transmissibility 
ν,νV=recovery
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• Note that if 𝜈=𝜈V (i.e., vaccination does not 
affect recovery) then b1>0
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unvaccinated individuals

• Thus 𝜈V>𝜈
• It follows that b1 could be negative.
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• Differentiating, we have

• It follows that the turning point is

• There are three requirements for this to be 
meaningful:

2. f(⌫⇤V ) < 0

1. ⌫⇤V > ⌫

The turning point

f 0(⌫V ) =
(! + µ+ ⌫V )2 � �V V̄ [! + µ+ ⌫]

(! + µ+ ⌫V )2

⌫⇤V =
q
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βV=transmissibility 
ν,νV=recovery

3. ⌫⇤V is a local minimum.
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Potential form of f(𝜈V)

f(νV)

νV* νV→ ∞νV=ν

• We can prove that the turning point is a local 
minimum whenever it exists.

f=vertex
v,νV=recovery
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Regular vaccinations
• We now refine the continuous model
• Vaccination may not occur before birth
• It may also be administered at regular times

– eg in schools or daycare centres
• We model a vaccine that 

reduces the susceptible 
population by a fixed 
proportion r

• This is described by a 
series of non-autonomous impulsive 
differential equations. r=coverage
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�S = �rS t = tk

�V = rS t = tk,

S=susceptible I,IV=infected 
R,RV=recovered V=vaccinated 
µ=background death ω=waning 
β,βV=transmissibility 
ν,νV=recovery γ,γV=loss of 
immunity 

where r is the coverage
and tk are the vaccination times.
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Susceptible individuals

• Assuming transmission is constant, we can 
prove that solutions are bounded below by a 
stable impulsive periodic orbit with endpoints

• These correspond to the local maximum and 
minimum values for the unvaccinated 
susceptibles after a long time

• Note in particular that 
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• We can prove that vaccinated individuals are 
bounded below by the impulsive periodic 
orbit with endpoints
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Infected individuals

• Assuming infected vaccinated individuals 
are negligible, we can prove that

• We thus define a new quantity, the impulsive 
reproduction number

which has the condition that the disease will 
be controlled if T0<1.
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• From the condition T0=1, we can define the 
maximal period as

• This is defined only if

• We can show that T0 is decreasing as r 
increases, for r<r*
– the disease can then be controlled if 

• For r>r*, T0<1 and the disease 
is always controlled.
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Summary of theoretical results

• High coverage can thus control the disease
• If coverage is limited, then sufficiently 

frequent vaccinations can also achieve 
control

• Note that the 
impulsive 
reproduction 
number is 
conditional.
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Continuous model, constant transmission

µ=1/70, ω=0.1, β=50, βV=0.5β, ε=0.9, p=0.5, 
𝜈=36, 𝜈V=1.2𝜈, 𝛾=1.8, 𝛾V=0.8𝛾.

µ=background death ω=waning 
β,βV=transmissibility ε=efficacy 
p=coverage ν,νV=recovery 
γ,γV=loss of immunity 
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µ=1/70, ω=0.1, b0=60, b1=0.16, φ=0.15, 
βV=0.5β, 𝜈=36, 𝜈V=1.2𝜈, 𝛾=1.8, 𝛾V=0.8𝛾, 
r=0.

Impulsive model, no vaccine
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µ=background death ω=waning 
b0=average transmissibility 
b1=seasonal amplitude φ=phase 
βV=transmissibility ν,νV=recovery 
γ,γV=loss of immunity, r=coverage 
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Impulsive model, 10% vaccination

µ=1/70, ω=0.1, b0=60, b1=0.16, φ=0.15, 
βV=0.5β, 𝜈=36, 𝜈V=1.2𝜈, 𝛾=1.8, 𝛾V=0.8𝛾, 
r=0.1. µ=background death ω=waning 

b0=average transmissibility 
b1=seasonal amplitude φ=phase 
βV=transmissibility ν,νV=recovery 
γ,γV=loss of immunity, r=coverage 
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Impulsive model, 25% vaccination

µ=1/70, ω=0.1, b0=60, b1=0.16, φ=0.15, 
βV=0.5β, 𝜈=36, 𝜈V=1.2𝜈, 𝛾=1.8, 𝛾V=0.8𝛾, 
r=0.25. µ=background death ω=waning 

b0=average transmissibility 
b1=seasonal amplitude φ=phase 
βV=transmissibility ν,νV=recovery 
γ,γV=loss of immunity, r=coverage 
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• 10% vaccination
• Note the low-level oscillations in both 

infected classes.
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Extreme parameters, no vaccine

µ=1/70, ω=0.1, β=0.03, βV=300, 𝜈=36, 𝜈V=177, 
𝛾=1.8, 𝛾V=0.8𝛾, r=0.
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µ=1/70, ω=0.1, β=0.03, βV=300, 𝜈=36, 𝜈V=177, 
𝛾=1.8, 𝛾V=0.8𝛾, r=1.

µ=background death ω=waning 
b0=average transmissibility 
b1=seasonal amplitude φ=phase 
βV=transmissibility ν,νV=recovery 
γ,γV=loss of immunity, r=coverage 
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Unexpected infection spikes

• We used extreme vaccination parameters
• Transmission due to vaccinated individuals 

was extremely high
• But recovery was fast
• This allowed low-level 

infection spikes to 
occur in infected 
populations

• Note that this is not a backward bifurcation
• Rather, it is a destabilisation of the DFE.
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Summary

• We considered two forms of vaccination:
– single administration before infection 

• e.g., a maternal vaccine
– periodic vaccination

• Using impulsive differential equations, we 
were able to formulate 
conditions on the 
period and strength of 
vaccination to allow 
for disease control.
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Impulsive reproduction number

• We also defined a new quantity, the 
impulsive reproduction number T0

• This is a sufficient (but not 
necessary) condition that 
ensures eradication if T0<1

• In this case, the infected population is 
contracting within each impulsive cycle

• The result is eventual eradication of the 
infection.

T0=impulsive reproduction number
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Constant vs seasonal transmission

• We assumed constant transmission for this 
derivation

• However, numerical simulations were 
performed using seasonal oscillations 
and demonstrated comparative results

• In particular, if the strength of periodic 
vaccination r is sufficiently high, the 
disease will be controlled 

• If not, control can still be achieved if the 
vaccine is given with sufficient frequency.

r=coverage
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Infection spikes

• The infection spikes occur when vaccine-
induced transmission is extremely high but 
recovery is extremely fast

• They occur even when the transmission 
function is not oscillating

• They are unlikely to occur in reality 
with the parameters we chose

• Nevertheless, we have shown 
proof-of-concept that such 
an outcome is possible.
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Limitations

We assumed: 
• The time to administer the vaccine was 

significantly shorter than the time between 
vaccinations

• A well-mixed population
• A single age cohort
• A population of fixed size
• Constant birth and death
• Maternal vaccination in the first model.
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Conclusions

• A vaccine that targets RSV infection has the 
potential to significantly reduce the overall 
prevalence of the disease

• Long-term, periodic vaccination can 
theoretically control the disease, but 
coverage needs to be high or administration 
sufficiently frequent

• Extreme parameters have the potential to 
induce unexpected infection spikes

• Care should be taken to understand long-
term effects when introducing new vaccines.
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