Unexpected infection spikes in
a model of Respiratory
Syncytial Virus vaccination

Robert Smith?

Department of Mathematics and Faculty of Medicine

The University of Ottawa

—_

il




Respiratory Syncytial Virus (RSV)

* The main cause of acute
lower respiratory infections in
adults and young children ... meumone o

Mycoplasma pneumoniae 9%

Etiology of acute
respiratory infections in
children.



Respiratory Syncytial Virus (RSV)

* The main cause of acute
lower respiratory infections in
adults and young children ... meumone o

 Almost all children have  meopssms sreumoniae o%
been infeCted by age 2 Haemophilus influenzae 6%

H. parainfluenzae 2%
Influenza B 2%

Influenza A 3%

Adenovirus 7%

Streptococcus pneumoniae 8%

Etiology of acute
respiratory infections in
children.



Respiratory Syncytial Virus (RSV)

* The main cause of acute
lower respiratory infections in
adults and young children ... meumone o

 Almost all children have  meopssms sreumoniae o%
been infeCted by age 2 Haemophilus influenzae 6%

H. parainfluenzae 2%

 About 0.5-2% of infants fuerzs 2%
require hospitalisation
due to infection

Adenovirus 7%

Streptococcus pneumoniae 8%

Etiology of acute
respiratory infections in
children.



Respiratory Syncytial Virus (RSV)

* The main cause of acute
lower respiratory infections in
adults and young children ... meumone o

 Almost all children have  wwesme semonize sw
been infeCted by age 2 Haemophilus influenzae 6%

H. parainfluenzae 2%

 About 0.5-2% of infants fuerzs 2%
require hospitalisation
due to infection

Adenovirus 7%

Streptococcus pneumoniae 8%

In 2005, 33.8 million new Etiology of acute
I " . t . f . .
episodes of RSV occurred in respiratory Infoctions in

children under 5 worldwide.
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Symptoms

* Mild symptoms: * Major symptoms:
— cough — difficulty
— runny nose breathing
— sore throat — blue skin due to
_ earache lack of oxygen
_ fever — bronchiolitis

— pneumonia.
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Burden of RSV

Highest number of observed cases occurs in
children aged six weeks to six months

Morbidity occurs in <0.1% of cases g b
Immunity is short-lasting -
Reinfection is common
Hospitalisation costs are substantial

Infection can occur throughout adult life
— often a cause of mortality in the elderly

RSV is a significant economic and
healthcare system burden.
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Seasonal patterns

In temperate climates, RSV epidemics
exhibit consistent seasonal patterns

Most infections occur during winter
months, whether wet or dry

Outbreaks typically last 2-5 months -

In tropical climates, RSV is detected
throughout the year, with less
pronounced seasonal peaks

The onset of RSV is typically
associated with the rainy season.
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antibody Palivizumab has proven effective in
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Prophylaxis

* |Immunoprophylaxis with the monoclonal
antibody Palivizumab has proven effective in
reducing the severity of symptoms

 However, it cannot prevent the onset of
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Prophylaxis

* |Immunoprophylaxis with the monoclonal
antibody Palivizumab has proven effective in
reducing the severity of symptoms

 However, it cannot prevent the onset of
infection
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Prophylaxis

* |Immunoprophylaxis with the monoclonal
antibody Palivizumab has proven effective in
reducing the severity of symptoms

 However, it cannot prevent the onset of
infection
— very expensive
— $1416.48 for a 100mg vial
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Prophylaxis

* |Immunoprophylaxis with the monoclonal
antibody Palivizumab has proven effective in
reducing the severity of symptoms

 However, it cannot prevent the onset of
infection
— very expensive
— $1416.48 for a 100mg vial

— generally only administered to
high-risk children.
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Vaccination

Recent research has focused on the
development of particle-based, subunit and
vectored vaccines

Several such vaccines are
being evaluated in clinical trials

Other vaccines are in
pre-clinical development

Live attenuated vaccines are » % ‘B ) &
also undergoing Phase | trials. Oy Ao
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Model 1

We extend an existing RSV model for a single
age cohort to include vaccination

We first assume a fixed proportion of '
individuals entering the model are -
temporarily immune to infection

This reflects the situation where pregnant '_,,
women are vaccinated in their third trimester

Protective maternal antibodies are transferred
placentally to the unborn infant

This confers protection for the first few
months of life.
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The continuous model

* The basic model with vaccination is
S" = u(l—ep) —uS —Bt)SUI + Iy) + YR+ wV
I'=B@)SUI+1Iv) —vI — pl + wly
R' =vI— uR—~vR+ wRy
Vi=epu—puV — By () V(I + Iv) + ywRy —wV
I, =0v(t)VUI + Iv) — vy Iy — uly —wly

/
V — V‘/I‘/ . H;Ii"/ — H/Ii‘/ — (,()Ii‘f,
S=susceptible |,ly=infected

with B(t)= Bo(1+pB1cos(21t+Y)) .
and Bv(t)=(1-a)B(t) - backaround doath ¢ effacy

p=coverage w=waning

(a may possibly be negative). |/ 50y oss o

immunity
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 We assume
— the leaving rate is unchanged across all classes
— no disease-specific death

— entry and leaving rates are scaled so
the population is constant
— transmissibility
oscillates seasonally.
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Constant transmission

There is a DFE satisfying

_____ _ 1 —
(S,I,R,V,Iv,R )=(< PILTW (o, PH ,0,0)

o+ w ptw
We can prove that this equilibrium is stable if
N4+ biAdc =0
has roots with negative real part, where
bp =—P0S+p+v—0vV+ry+ptw
c1 = (BS —pu—v)(BvV —vy —p—w) - BvV(BS +w)
= BS(~vv —p—w) = (u+V)(ByV — vy —p—w) ~ fyVw.

S=susceptible I=infected R=recovered
V=vaccinated susceptible
lv=vaccinated infected Rvy=vaccinated
recovered u=background death

e =efficacy p=coverage w=waning
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1

* If b1>0, then c1 is a proxy for the eigenvalues
* |f b1<0, then the DFE is unstable and c¢1 is

not a threshold.

bi1=vertex
cr1=intercept
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Complex eigenvalues?

* |f the roots are complex,
then

—bl + \/b% — 461

2
with the discriminant
negative, and so

b
Re()) = —51

A =

- It follows that stability in b1/2
this case occurs if and
only if b1>0.

bi1=vertex
cr1=intercept
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Basic reproduction number

* Rearranging the constant term leads to
_ BS(vv +p+w)+BvV(n+v+w)
(h+v)(p+rvy +w)
* If ¢1=0 and b1>0, then we have a bifurcation
with the property that the DFE is stable if

Ro<1 and unstable if Ro>1

(as desired)
 However, it possible that when ¢1=0, b1<0
* |n this case, Ro is not a threshold, and the

Ry

- . . S=susceptible V=vaccinated
d |Sease Ca n pe rSISt If RO< 1 . u:background death w:Wanjng
B,Bv=transmissibility
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Positive vertex

When c¢1=0, we have

1 ¥ 2
b1 L T vt it BvV (v —wvy) + (vv + p+w)?]
Note that if v=vv (i.e., vaccination does not

affect recovery) then b1>0

However, we expect that vaccinated
individuals will recover faster than
unvaccinated individuals

Th Uus VV>V VV=vaccinated bi=vertex

cr1=intercept

It follows that b1 could be negative. | oo

Bv=transmissibility
V,Vv=recovery
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* |n this case,

7y —
lim by = lim BrV(v VV)—I—w+,LL—|—VV
Vy — 00 Vy — 00 w—l—lu—l—yv
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A possible turning point?

* |f vy—0, this is equivalent to vaccinated
individuals recovering instantaneously

* |n this case,

V(y —
lim b; = lim vV (v VV)—I—w+,LL—|—VV
Uy — 00 Uy — 00 (,u—|—lu—|—yv
:—ﬁvv+00>0

B By V(v —uvy)+ (w4 pu+vy)?

* Defining f(vwv) = N

we have f(v)>0 and f(«~)>0
 Does f have a local minimum?
* |If so, could it be negative?

?

V=vaccinated bi=vertex
u=background death
w=waning
Bv=transmissibility
V,vv=recovery




The turning point

 Differentiating, we have



The turning point

 Differentiating, we have

) = (w+p+rvv):—ByViw+ p+ v
(@t pt )’

V=vaccinated
u=background death
w=waning
Bv=transmissibility
V,Vv=recovery




The turning point

 Differentiating, we have

() = (w+p+vy)? —ByViw+ pu+ v
v W+ p+wv)?

* |t follows that the turning point is

V=vaccinated
u=background death
w=waning
Bv=transmissibility
V,Vv=recovery




The turning point

 Differentiating, we have

() = (w+p+vy)? —ByViw+ pu+ v
v W+ p+wv)?

* |t follows that the turning point is

V‘”}:\/BVV(w—l—,quu)—w—,u

V=vaccinated
u=background death
w=waning
Bv=transmissibility
V,Vv=recovery




The turning point

 Differentiating, we have

() = (w+p+vy)? —ByViw+ pu+ v
v W+ p+wv)?

* |t follows that the turning point is
vy = \/BVV(w—I—,LL+V) —w— U
* There are three requirements for this to be
meaningful:

V=vaccinated
u=background death
w=waning
Bv=transmissibility
V,Vv=recovery




The turning point

 Differentiating, we have

() = (w+p+vy)? —ByViw+ pu+ v
v W+ p+wv)?

* |t follows that the turning point is
vy = \/BVV(w—I—,LL+V) —w— U
* There are three requirements for this to be
meaningful:

L. vy > v

V=vaccinated
u=background death
w=waning
Bv=transmissibility
V,Vv=recovery




The turning point

 Differentiating, we have

() = (w+p+vy)? —ByViw+ pu+ v
v W+ p+wv)?

* |t follows that the turning point is
vy = \/BVV(w—I—,LL+V) —w— U
* There are three requirements for this to be
meaningful:

L. vy > v

V=vaccinated *
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w=waning
Bv=transmissibility
V,Vv=recovery




The turning point

 Differentiating, we have

() = (w+p+vy)? —ByViw+ pu+ v
o W+ p+ )2

* |t follows that the turning point is
vy = \/BVV(w—I—,LL+V) —w— U
* There are three requirements for this to be
meaningful:

L. vy > v

V=vaccinated 2. f (V‘*/) <0

u=background death
w=waning 3. vy, 1s a local minimum.

Bv=transmissibility
V,Vv=recovery
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Potential form of f(vv)

—> 0

= * Vv
VV 'V \/V v

* We can prove that the turning point is a local
minimum whenever it exists.

f=vertex
V,Vv=recovery
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Regular vaccinations

We now refine the continuous model
Vaccination may not occur before birth

It may also be administered at regular times

— eg In schools or daycare centres

We model a vaccine that
reduces the susceptible
population by a fixed
proportion r

This Is described by a §
series of non-autonomous |mpuIS|ve
differential equations.

r=coverage
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The impulsive model

S"=p—pS—BH)SUI+1Iy)+yR+wV t £t
I'=pt)SI + Iv) — vl — pl +wly t £t
R =vl—pR—yR+wRy t # ti
Vie—pV = Bv()V(I +Iv) +wRy —wV t £ty
Iy = BvV(I +1v) —vvly — ply —wly t #
v =vvly — pRy —ywRy —why t £t
AS = —rS t =t
AV =rS t =ty

where r is the coverage
. . ] S=susceptible I, lv=infect_ed
and tk are the VaCC|nat|On tlmes R,Rv=recovered V=vaccinated

u=background death w=waning
B,Bv=transmissibility
V,vv=recovery y,yv=loss of
immunity
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Susceptible individuals

« Assuming transmission is constant, we can
prove that solutions are bounded below by a
stable impulsive periodic orbit with endpoints

" (1 _ 6—(u+6)7)

(1 +8) (L= (1 —r)e- i)
u(l—r) (1 — e AT

(b+8) (1= (1 —r)etir)

* These correspond to the local maximum and
minimum values for the unvaccinated

S =

ST =

susceptibles after a long time
] ] . B S=susc?ptible /J_=b§c_lfground
° Note N partlcular that 71_15)% Soo — (). death B=transmissibility

r=coverage r=period




Vaccinated individuals

* We can prove that vaccinated individuals are
bounded below by the impulsive periodic
orbit with endpoints



Vaccinated individuals

* \We can prove that vaccinated individuals are
bounded below by the impulsive periodic
orbit with endpoints

L (1 _ 6—(M+B)T) e~ (tB+w)T

(u+8) (L= (1 =r)e=Bth) (1 — e~ (ptftw)r)

rp (1 — e (AT

(b+B) (1= (1 —r)e-WthT) (1 — e~ (uthtw)r)’

Vo =

Vi =

V=vaccinated u=background
death B=transmissibility
w=waning r=coverage 1=period
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Infected individuals

* Assuming infected vaccinated individuals
are negligible, we can prove that
, Bu (1 — e 0H00T)
U A (- A ne
* We thus define a new quantity, the impulsive
reproduction number
Bu (1 _ 6—(u+6)7)
(v +p)(p+8) (1= (1L—r)e-wthr)’
which has the condition that the disease will
be controlled if To<1.

I —vl —ul

Ty =

I=infected u=background death
B=transmissibility v=recovery
r=coverage t=period
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Impulsive reproduction number

From the condition To=1, we can define the

maximal period as

b A-nwt et ) - B

p+p (v +p)(p+B) — Bp
This is defined only if
r<r*=1- Bre
(v + p)(p =+ B)

We can show that To is decreasing as r
increases, for r<r*

— the disease can then be controlled if 7 < 7

* 1 To=impulsive reproduction #
For r>r, To<1 and the disease | 3 o
B=transmissibility v=recovery

|S a|WayS COntrO”ed . r=coverage 1=period
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Summary of theoretical results

* High coverage can thus control the disease

* |f coverage is limited, then sufficiently
frequent vaccinations can also achieve
control

* Note that the
impulsive
reproduction
number IS
conditional.
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Impulsive model, no vaccine
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Impulsive model, 10% vaccination
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u=background death w=waning
bo=average transmissibility
bi=seasonal amplitude p=phase
Bv=transmissibility v,vv=recovery
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Unexpected infection spikes

We used extreme vaccination parameters

Transmission due to vaccinated individuals
was extremely high

This allowed low-level
infection spikes to
occur in infected
populations

Note that this is not a backward bifurcation
Rather, it is a destabilisation of the DFE.
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Summary

* We considered two forms of vaccination:
— single administration before infection
* e.g., a maternal vaccine
— periodic vaccination

» Using impulsive differential equations, we
were able to formulate A
conditions on the
period and strength of
vaccination to allow
for disease control.




Impulsive reproduction number

* We also defined a new quantity, the
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Impulsive reproduction number

* We also defined a new quantity, the

impulsive reproduction number To p, O

* This is a sufficient (but not
necessary) condition that
ensures eradication if To<1

- i\ . _
e LA . N
. ’ '\l ;’-;:::‘h. .Iv \, N
] J \
-~ ™ . RS
. \ | b
1) 4
VII
y T

ok |\

l |

To=impulsive reproduction number




Impulsive reproduction number

* We also defined a new quantity, the ¢
impulsive reproduction number To p,"

» This is a sufficient (but not b “Awg [
necessary) condition that TR
ensures eradication if To<1 (T 1)
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Impulsive reproduction number

We also defined a new quantity, the ¢
impulsive reproduction number To p,"
This is a sufficient (but not ) =l

necessary) condition that TR
ensures eradication if To<1 | |

In this case, the infected population is
contracting within each impulsive cycle

The result is eventual eradication of the
infection.

To=impulsive reproduction number
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Constant vs seasonal transmission

e We assumed constant transmission for this

derivation

 However, numerical simulations were
performed using seasonal oscillations
and demonstrated comparative results

* |n particular, if the strength of periodic & '

vaccination r is sufficiently high, the
disease will be controlled

* |If not, control can still be achieved if the
vaccine is given with sufficient frequency.

r=coverage
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Infection spikes

The infection spikes occur when vaccine-
induced transmission is extremely high but
recovery is extremely fast

They occur even when the transmission
function is not oscillating

They are unlikely to occur in reallty
with the parameters we chose '

Nevertheless, we have shown A N
proof-of-concept that such
an outcome is possible.
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Limitations

We assumed:

 The time to administer the vaccine was
significantly shorter than the tlme between
vaccinations

* A well-mixed population
* A single age cohort

* A population of fixed size
» Constant birth and death -7
. Maternal vaccination in the first model.
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Conclusions

A vaccine that targets RSV infection has the
potential to significantly reduce the overall
prevalence of the disease

Long-term, periodic vaccination can
theoretically control the disease, but
coverage needs to be high or administration
sufficiently frequent

Extreme parameters have the potential to
iInduce unexpected infection spikes

Care should be taken to understand long-
term effects when introducing new vaccines.
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