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Cholera, characterized by severe diarrhea and rapid dehydration, is a water-borne infec-
tious disease caused by the bacterium Vibrio cholerae. Haiti offers the most recent
example of the tragedy that can befall a country and its people when cholera strikes.
While cholera has been a recognized disease for two centuries, there is no strategy for
its effective control. We formulate and analyze a mathematical model that includes two
essential and affordable control measures: water chlorination and education. We calcu-
late the basic reproduction number and determine the global stability of the disease-free
equilibrium for the model without chlorination. We use Latin Hypercube Sampling to
demonstrate that the model is most sensitive to education. We also derive the minimal
effective chlorination period required to control the disease for both fixed and variable
chlorination. Numerical simulations suggest that education is more effective than chlo-
rination in decreasing bacteria and the number of cholera cases.
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1. Introduction

Cholera is a severe water-borne infectious disease caused by the bacterium Vibrio
cholerae (V. cholerae). Recent years have seen a strong trend of cholera outbreaks in
developing countries, including Haiti (2010–2011), Cameroon (2010–2011), Kenya
(2010), Vietnam (2009), Zimbabwe (2008–2009), Iraq (2008), the Democratic
Republic of Congo (2008) and India (2007).1 Due to its huge impact on public
health, and social and economic development, cholera has been the subject of exten-
sive studies in clinical, experimental and theoretical fields. It remains an important
global cause of morbidity and mortality, capable of causing periodic epidemic dis-
ease.2 Cholera is an example of a bacterial disease whose primary mode of infection
is indirect, which is caused when individuals ingest fecal-contaminated water con-
taining the bacteria V. cholera.1 Transmission between humans and reservoirs of
pathogens implies that disease transmission includes an indirect route other than
human-to-human contacts.

Education is a key tool in disease management that is often overlooked.3 It
requires investment in people, rather than investment in biomedical interventions,
but it has the potential to lead to enormous benefits for relatively low cost. Indeed,
behavioral interventions have been solely responsible for the near-eradication of
Guinea Worm Disease.4,5 Conversely, a lack of information can have a severe impact
on worsening the disease. For example, 60% of gay men attending an STD clinic in
urban South Africa were unaware that anal sex was a risk factor for HIV.6

Cholera-specific education includes advising people with symptoms to seek
medical care promptly, and improving sanitation and hygienic practices.7 Failures
of health education can be traced to barriers at one of six sites: to be effective,
messages have to (1) reach the intended audience, (2) gain attention, (3) be cor-
rectly understood, (4) be accepted, (5) result in changed behavior and (6) result
in improvement in health.8 Health education during the 1994 cholera epidemic of
Guinea-Bissau demonstrated that local preventive rituals, radio and word-of-mouth
communication were effective educational tools.7 In this study, messages reached
subject participants, all of whom rapidly sought medical treatment, but none could
identify how cholera was transmitted. The KwaZulu-Natal Department of Health in
South Africa has recommended that health-education messages on cholera should
emphasise home management (increasing fluid intake, specifically sugar-salt solu-
tions and oral rehydration salts) and early-care-seeking at rehydration centers, clin-
ics or hospitals.9

The first scientists to suggest disinfecting water with chlorine were Louis-
Bernard Guyton de Morveau (in France) and William Cumberland Cruikshank
(in England), both around the year 1800, as it was found that water that has been
treated with chlorine is effective in preventing the spread of water-borne diseases.10

However, disinfection by chlorination can be problematic in some circumstances.
Chlorine can react with naturally occurring organic compounds found in the water
supply to produce disinfection byproducts (DBPs) such as trihalomethanes and
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haloacetic acids. Due to the potential carcinogenicity of these compounds, drinking-
water regulations across the developed world require regular monitoring of the
concentration of these compounds in the distribution systems of municipal water
systems. The World Health Organization has stated that risks to health from DBPs
are extremely small in comparison with inadequate disinfection.11

Understanding the fundamental mechanism in the disease transmission is crucial
for effective prevention and intervention strategies against a cholera outbreak. To
this effect, mathematical modeling provides a unique approach to gain basic insights
into the dynamics of infectious diseases. Therefore, by exploring the potential effects
of disease-control strategies such as water chlorination, mathematical modeling can
predict the dynamics of explosive epidemics often associated with cholera outbreaks.

Previous models of cholera have consisted of simple SIR models,12 incorpo-
rated hyperinfectivity and low-infected bacteria states,13,14 examined vaccination
and education15 and also education, sanitation and chlorination.16 However, none
of these models gives a clear idea about the effect of chlorination and education,
and the best time of applying them, nor do they distinguish between the force of
infection inside and outside water. Moreover, due to limited resources and infras-
tructure, continuous chlorination of water-distribution sources is neither feasible
nor desirable.5

Here, we develop a compartmental transmission model that characterizes the
population as susceptible to infection, infected and infectious to others, or recovered
or otherwise removed from risk for further infection. Our objective is to formulate
and analyze a model for cholera that includes relevant biological detail and accounts
for a basic intervention strategy not considered before in cholera models; namely,
water chlorination at discrete, not necessarily fixed, times.

This paper is organized as follows. In Sec. 2, we introduce the continuous model
(without chlorination). In Sec. 3, we study the existence of the endemic equilibrium
under some conditions and analyze the stability of the disease-free equilibrium. In
Sec. 4, we analyze the impulsive chlorination model. In Sec. 5, we perform numerical
simulations to support our analytical results. Finally, we conclude with a discussion.

2. The Model

Our model accommodates the diverse dynamics of a cholera outbreak determined
by population-specific parameters such as the rate of water chlorination and the
rate of bacteria ingestion. Figure 1 depicts our initial model compartment and flows,
which is interpreted as a system of four ordinary differential equations. A complex
system of interactions occurs between the human host, pathogen and environment.

The model classifies the human population N(t) into three classes: susceptible
individuals S(t), infected individuals I(t) and recovered individuals R(t), so that

N(t) = S(t) + I(t) +R(t). (2.1)
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Fig. 1. The model. Individuals can be susceptible, infected or recovered. We assume logistic
growth for bacteria with per capita growth rate b and carrying capacity K. Susceptible individuals
enter the model with recruitment rate Λ and are exposed to a force of infection λ. Infected
individuals recover with a rate δ and may become susceptible again at rate α. The natural human
mortality and disease death rates are µh and µd, respectively, while the bacteria death rate is µp.
Direct education (ψe) reduces both the force of infection and the bacteria shed rate θ.

The pathogen population is P (t), which represents the concentration of bacteria
in the aquatic environment. It is assumed that, at any moment in time, there is
constant inflow Λ into the susceptible class (human recruitment rate). Susceptible
individuals acquire infection at a time-dependent rate in two ways: the first is
βpP (t)
Hp+P (t) (Holling type-II functional response) where βp > 0 is the contact rate for

humans and contaminated water, P (t)
Hp+P (t) is the probability that an individual in

contact with untreated water is infected with cholera and Hp is the half-saturation
constant17; i.e., the concentration of V. cholerae in water that yields a 50% chance
of getting cholera. We choose a Holling type-II functional response based on the fact
that, even though the spread of cholera is rapid, there is always a saturation point.
A Holling type-II functional response captures this saturation/inhibitory effect as
the number of infectives becomes large.

The second method of acquiring infection is the force of infection associated
with cholera, given by βiI(t)

Hi+I(t)
, where βi > 0 is the effective contact rate (con-

tact sufficient to result in cholera infection) and Hi is the half-saturation constant
outside water. Infected individuals may recover at rate δ; this depends on nutri-
tion, medication, immunity and age. Recovered individuals become susceptible at
a rate α, while µ is the natural human mortality rate and µd is the cholera-induced
mortality rate.

We assume that bacteria enter the pathogen reservoir of V. cholerae at a rate
b(1 − P (t)

K ), proportional to bacteria density in this class, where b > 0 is the per
capita growth rate for V. cholerae, K > 0 is the environmental carrying capacity
for V. cholerae in the water supply, µp is the death rate for bacteria and θ > 0 is
the average contribution of each infected individual to the pathogen population
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of V. cholerae. Finally, 0 ≤ ψe ≤ 1 is a constant representing direct cholera-
related education. This is a composite parameter encapsulating behavior changes
that result from avoiding contact with infected people and avoiding contaminat-
ing water sources. We assume this would be achieved as a result of a formalized
information and communication strategy.

Putting the above formulations and assumptions together gives the following
system of differential equations:

S′(t) = Λ + αR(t) − ((1 − ψe)λ+ µh)S(t),

I ′(t) = (1 − ψe)λS(t) − (µh + δ + µd)I(t),

R′(t) = δI(t) − (α+ µh)R(t),

P ′(t) = b

(
1 − P (t)

K

)
P (t) + (1 − ψe)θI(t) − µpP (t),

(2.2)

where

λ =
βpP (t)

Hp + P (t)
+

βiI(t)
Hi + I(t)

(2.3)

is the force of infection.
The state variables and the associated parameters are described in Table 1.

There are two equilibria for this system:

(i) The disease-free equilibrium (DFE) given by E0 = ( Λ
µh
, 0, 0, 0).

(ii) The endemic equilibrium (EE) given by Ee = (Se, Ie, Re, Pe) with Se, Ie, Re,
Pe > 0. We will prove the stability conditionally upon existence.

3. Saturation Constants and the Endemic Equilibrium

The saturation constant Hp represents the bacteria concentration in water at which
the force of infection is half the transmission rate. Thus, it will be subject to gen-
eral education about sanitation and cleanliness, which can have a large effect on
disease control.5 Similarly, Hi represents contact between susceptible and infected
individuals and is also subject to general education about disease prevention meth-
ods, such as the use of gloves and hand-washing (in clean water) when in contact
with infected individuals. We refer to these methods of disease control as indirect
education, as they pertain to general health, rather than the direct avoidance of
contamination that φe represents. As a result, we examine the limiting cases of the
two saturation constants, as a proxy for broader education initiatives.

The limiting cases for the saturation constants are illustrated in Fig. 2. The
cases are:

(1) Hk → ∞ for k = p, i (force of infection is zero), which implies the DFE and a
degenerate EE, (Se, 0, 0, Pe) with Pe > 0, both exist.

(2) Hp → ∞ and Hi → hi /∈ {0,∞} (force of infection is independent of bacteria
density in water, disease is one that is solely transmitted outside water), which
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(0,0)
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( ,0)

(0, )iH

( ,0)pH

( , )p iH H

( , )pH

( , )iH
iH

pH

DFE onlyEE conditionallyEE

EE conditionally

EE EE

Fig. 2. Limiting cases for the saturation constants, illustrating the nine extreme cases listed in
Sec. 3. The square represents a Cartesian product of two intervals; i.e., [0,∞] × [0,∞]. Any pair
(Hp,Hi) can be described depending on the values of Hp and Hi (values are 0, ∞ or a positive,
finite number).

implies an EE (Se, Re, Ie, Pe) exists conditionally, given by

Se =
(µh + δ + µd)
(1 − ψe)λe

Ie, (3.1)

Re =
δ

α+ µh
Ie, (3.2)

Ie =
Λ(1 − ψe)βi − µhHi(µh + δ + µd)

(1 − ψe)βi
((

1 + µh

(1−ψe)βi

)
(µh + δ + µd) − αδ

α+µh

) . (3.3)

Here we used

λe =
βiIe

Hi + Ie
, (3.4)

to evaluate Ie (in Eq. (3.3)). The value of Pe is not evaluated because the
bacteria in water makes no contribution to cholera in this case. We need the
condition Λ(1 − ψe)βi − µhHi(µh + δ + µd) > 0 to have a positive EE.

(3) Hp → hp /∈ {0,∞} and Hi → ∞ (force of infection is independent of human
infected cases, disease is solely transmitted via water), which implies an EE
(Se, Re, Ie, Pe) exists unconditionally, given by

Se =
(µh + δ + µd)
(1 − ψe)λe

Ie, (3.5)

Re =
δ

α+ µh
Ie, (3.6)

Ie =
Λ

(1 + µh

(1−ψe)λe
)(µh + δ + µd) − αδ

α+µh

, (3.7)

1340007-7
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with

λe =
βpPe

Hp + Pe
. (3.8)

(4) Hp → ∞ andHi → 0 (force of infection is independent of the density of bacteria
in water and independent of the bacteria dose outside water). In this case, the
EE exists unconditionally and is given by

Se =
(µh + δ + µd)
(1 − ψe)λe

Ie, (3.9)

Re =
δ

α+ µh
Ie, (3.10)

Ie =
Λ((

1 + µh

(1−ψe)βi

)
(µh + δ + µd) − αδ

α+µh

) . (3.11)

Here Pe is out of our interest. Note that Ie > 0.
(5) Hp → 0 and Hi → ∞ (force of infection is independent of bacteria dose in

water and independent of infected cases). A similar result to that in Case 4 is
applied here, with βi replaced by βp, so the EE exists unconditionally.

(6) Hk → 0 for k = p, i, which implies λ = βp + βi (force of infection is constant;
that is, independent of human infected cases and bacteria density). A similar
result to Case 4 is applied here, with βi replaced by βi + βp, so the EE exists
unconditionally.

(7) Hp → 0 and Hi → hi /∈ {0,∞}.
(8) Hp → hp /∈ {0,∞} and Hi → 0.
(9) Hk → hk /∈ {0,∞} for k = p, i.

It is hard to give an explicit formula for the EE in the last three cases, so the
analysis of the EE will be given in general in Sec. 3.2.

Remark. Note that the importance of education is clear in the EE in Eq. (3.3), in
which if ψe → 1, then the EE does not exist.

3.1. Stability of the DFE

To study the stability of the DFE, we have the Jacobian matrix

J(E0) =




−µh − Λ
µh

(1 − ψe) βi

Hi
α − Λ

µh
(1 − ψe)

βp

Hp

0 Λ
µh

(1 − ψe) βi

Hi
− (µh + δ + µd) 0 Λ

µh
(1 − ψe)

βp

Hp

0 δ −(α+ µh) 0

0 (1 − ψe)θ 0 b− µp



,

(3.12)

1340007-8



2nd Reading

January 13, 2014 10:23 WSPC/S0218-3390 129-JBS 1340007

Modeling Cholera Disease with Education and Chlorination

which has the eigenvalues λ = −µh,−(µh + α) and the eigenvalues of the matrix

A =

(
Λ
µh

(1 − ψe) βi

Hi
− (µh + δ + µd) Λ

µh
(1 − ψe)

βp

Hp

(1 − ψe)θ b− µp

)
. (3.13)

Note that A has eigenvalues with negative real part if tr(A) < 0 and det(A) > 0.
This occurs when

µp − b > 0. (3.14)

In this case,

R0 ≡ Λ(1 − ψe)
µh(µh + δ + µd)

(
βi
Hi

+
(1 − ψe)βpθ
(µp − b)Hp

)
. (3.15)

Here, R0 is the basic reproduction number.20 R0 is a useful threshold for disease
eradication if there is a forward bifurcation at R0 = 1.21 This disease-threshold
quantity, R0, measures the average number of secondary cases generated by a single
individual in a population of susceptibles at a demographic steady state. In models
with only two steady states and a forward bifurcation, R0 > 1 implies that the
endemic state is stable (infection persists), and R0 < 1 implies that the uninfected
state is stable (infection is eliminated).

Remark. The limiting cases for the saturation constants can be related to R0 as
follows.

(a) Hk → ∞ for k = p, i. In this case, R0 = 0 and the DFE is locally asymptotically
stable. This implies that, when infection is independent of the concentration of
bacteria, the disease is under control.

(b) Hp → ∞ and Hi → hi /∈ {0,∞}. In this case, R0 ≡ Λ(1−ψe)
µh(µh+δ+µd)

βi

Hi
. Moreover,

the EE exists only for R0 > 1. The proof of the second statement follows from
Eq. (3.3), which implies that Ie < 0 for R0 < 1, and Ie > 0 for R0 > 1.

Theorem 3.1. If (3.14) holds, then, for R0 < 1, the DFE E0 is locally asymptoti-
cally stable, and, for R0 > 1, E0 is unstable.

Remark. If (3.14) does not hold, then P (t) �→ 0 as t → ∞, which means the
disease persists in the absence of any other controls.

Note that R0 = 1 is equivalent to βi(µp − b)Hp + βpθ(1 − ψe)Hi = βc, where
βc ≡ µh(µh+δ+µd)

Λ(1−ψe) .

Corollary 3.1. (1) For βi(µp− b)Hp+ βpθ(1−ψe)Hi < βc, the DFE E0 is locally
asymptotically stable.
(2) For βi(µp − b)Hp + βpθ(1 − ψe)Hi > βc, the DFE E0 is unstable.

Theorem 3.2. If (3.14) holds, then, for R0 < 1, the DFE is globally asymptotically
stable and unstable for R0 > 1.
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Proof. We use the comparison theorem.22 We have[
I ′(t)

P ′(t)

]
= (F − V )

[
I(t)

P (t)

]
+


− Λ

µh
(1 − ψe) βi

Hi
I(t) + βiI(t)

Hi+I(t)
(1 − ψe)S(t)

−bP 2(t)
K




≤ (F − V )

[
I(t)

P (t)

]
(3.16)

because S(t)
Hi+I(t)

≤ Λ
µhHi

for t sufficiently large. Here

F − V =

[
Λ
µh

(1 − ψe) βi

Hi
− (µh + δ + µd) Λ

µh
(1 − ψe)

βp

Hp

(1 − ψe)θ b− µp

]
,

which has negative eigenvalues when R0 < 1, which means (I(t), P (t)) → (0, 0) as
t→ ∞. This implies that (S(t), R(t)) → ( Λ

µh
, 0). The result follows.

Thus R0 has useful threshold properties.21

3.2. Stability of the endemic equilibrium

Theorem 3.3. For R0 > 1, if (3.14) holds, then any endemic equilibrium is locally
stable.

Proof. We utilize Theorem 4 in Ref. 23. First, note that the Jacobian matrix for
the DFE has eigenvalues λ = −µh,−µh−α, b−µp + Λ

µh
(1−ψe) βi

Hi
− (µh + δ+µd)

and 0, when βi(−b + µp)Hp + βpθ(1 − ψe)Hi = βc. Also, the zero eigenvalue has
right eigenvector (u1, u2, u3, u4) and left eigenvector (v1, v2, v3, v4), where

u1 = − (µp − b)
θ(1 − ψe)

u4

(
1 +

µd
µh

− δ

θ(α+ µh)

)
,

u2 =
(µp − b)
θ(1 − ψe)

u4 u3 =
δ(µp − b)

θ(α+ µh)(1 − ψe)
u4,

and u4 > 0 is free. Also, v1 = v3 = 0,

v2 =
µhHp(−b+ µp)

Λβp(1 − ψe)
v4,

and v4 > 0 is free. We have

a =
n∑
i,j,k

vkuiuj
∂2fk
∂xi∂xj

(E0, βc)

= 2(1 − ψe)
βi
Hi
v2u1u2 + 2(1 − ψe)

βp
Hp

v2u1u4 − 2(1 − ψe)
Λβi
µhH2

i

v2u
2
2

− 2(1 − ψe)
Λβp
µhH2

p

v2u
2
4 − 2

b

K
v4u

2
4

< 0,
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where E0 is the DFE. This implies that (i) or (iv) in Theorem 4 of Ref. 23 are
applicable. However, for β < βC , E0 is locally asymptotically stable. As a result,
(iv) is the only applicable case. This means that when β changes from β < βC to
β > βC , E0 changes from stable to unstable and any EE changes from negative to
positive and becomes locally asymptotically stable.

To summarize, we have analyzed the continuous chlorination model. We calcu-
lated the basic reproduction number and used it to prove global stability of the
DFE and local stability of the EE.

4. Discrete Chlorination

Assume that chlorination reduces the pathogen population by a proportion ψr,
satisfying 0 ≤ ψr < 1, and that it occurs at distinct times tk (k = 0, 1, 2, . . .). We
thus have a system of impulsive ODEs. That is, between impulses tk, the continuous
system (for t �= tk) is

S′(t) = Λ + αR(t) − ((1 − ψe)λ+ µh)S(t),

I ′(t) = (1 − ψe)λS(t) − (µh + δ + µd)I(t),

R′(t) = δI(t) − (α + µh)R(t),

P ′(t) = b

(
1 − P (t)

K

)
P (t) − µpP (t) + (1 − ψe)θI(t),

for t �= tk. For t = tk (the impulsive condition), we have

P+ = (1 − ψr)P− t = tk. (4.1)

Here ( )+ and ( )− are the left and right limits at tk.
Note that

I ′(t) ≤ I∗ − (µh + δ + µd)I(t), (4.2)

with I∗ = Λ(1−ψe)(βp+βi)
µh

, which implies

I(t) ≤ I∗∗ + (I(0) − I∗∗) exp(−(µh + δ + µd)t), (4.3)

with I∗∗ = I∗
µh+δ+µd

. Note that, for large t, (4.3) implies that

I ≤ I∗∗ + ε ≡ Î , (4.4)

for some 0 < ε� 1. Then

P ′(t) ≤ (1 − ψe)θÎ − rP, (4.5)

with r = µb − b.
Now define

Λ̂ ≡ (1 − ψe)θÎ. (4.6)
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Therefore, the pathogen population at time t (for t and k large) is given by

P (t) ≤ Λ̂
r

(1 − e−r(t−tk)) + P (t+k )e−r(t−tk). (4.7)

As a result, the pathogen population immediately before the (k+ 1)st chlorination
time (for large k) satisfies

P (tk+1) ≤ Λ̂
r

(1 − e−r(tk+1−tk)) + (1 − ψr)P (t−k )e−r(tk+1−tk). (4.8)

Theorem 4.1. Suppose that (3.14) holds. If chlorination occurs at fixed times
τ = tk+1− tk (for k sufficiently large), then the fixed point of the recurrence relation
(4.8) satisfies

P̃ ≤ Λ̂
r

(
1 − ψre

−rτ

1 − (1 − ψr)e−rτ

)
. (4.9)

Proof. Similar to Theorem 4.1 in Refs. 24 and 25, we can solve Eq. (4.8) sequen-
tially. We have

P (tn) ≤ Λ̂
r

(
1 −

n−1∑
i=1

ψr(1 − ψr)n−i−1e−r(tn−t0) − (1 − ψr)n−1e−r(tn−t0)
)

+ (1 − ψr)nP (0)e−r(tn−t0), (4.10)

which is equivalent to

P (tn) ≤ Λ̂
r

(
1 − ψre

−rτ − (1 − ψr)n−1ψre
−rτ

1 − (1 − ψr)e−rτ
− (1 − ψr)n−1e−rτ

)

+ (1 − ψr)nP (0)e−rnτ . (4.11)

This implies (4.9) as n→ ∞ because 0 ≤ ψr < 1.

Remarks. (1) Suppose that (3.14) holds. Note that limn→∞,τ→0 P (tn) = 0, which
means that the pathogen population tends to zero in the long run, as the period
between chlorination events tends to zero.

(2) Note that if ψe → 1 and (3.14) holds, then Λ̂ → 0 (Eq. (4.6)) and limn→∞
P (tn) = 0, which means that the pathogen population tends to zero in the
long run, regardless of the time between chlorination events. This shows the
important of education in controlling cholera.

Corollary 4.1. Suppose that (3.14) holds. Then, to reduce the total pathogen popu-
lation below a desired threshold P̃ , the minimum chlorination effectiveness satisfies

ψ̃r = 1 −
(

1 − Λ̂
rP̃

(1 − e−rτ )

)
erτ . (4.12)
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Equivalently, the minimum chlorination period satisfies

τ̃ = −1
r

ln

[
Λ̂ − rP̃

Λ̂ + rP̃ (ψr − 1))

]
. (4.13)

Proof. See Corollary 4.3 of Ref. 24. In fact, as n → ∞, the right-hand side of
(4.11) tends to Λ̂

r (1 − ψre
−rτ

1−(1−ψr)e−rτ ). The result follows by solving

Λ̂
r

(
1 − ψre

−rτ

1 − (1 − ψr)e−rτ

)
≤ P̃ . (4.14)

for ψ̃r and τ̃ respectively.

As a result, the minimal chlorination effectiveness and the minimal chlorination
period can be found in terms of birth and death rates for both human and pathogen
population, the carrying capacity for the pathogen population, chlorination and
education effectiveness.

The next theorem follows via the same technique used to prove Theorem 4.4 of
Smith? and Hove-Musekwa.24

Theorem 4.2. Suppose that (3.14) holds and k is sufficiently large. Assume that
chlorination occurs at non-fixed times and the two previous chlorination events are
known. Then the population of the pathogen can be reduced below the threshold P̃ if
the next chlorination event is applied at

tk+1 ≤ tk − 1
r

ln

[
2 − ψr − P̃ r

Λ̂

1 + ψr(1 − ψr) exp(−r(tk − tk−1))

]
. (4.15)

Proof. From (4.10), we have

P (t−n ) ≤ Λ̂
r

(
1 − e−r(tn−t0)

)
. (4.16)

By substituting this in the left-hand side of (4.8), then solving it for tn+1 at the
threshold value P̄ , the result follows.

As in Theorem 4.5 of Smith? and Hove-Musekwa,24 we can derive the “next
best” chlorination events for non-fixed chlorination by assuming that the time
between the current chlorination and three chlorination events previously is suf-
ficiently large. The next theorem follows immediately from Ref. 24.

Theorem 4.3. If non-fixed chlorination occurs indefinitely, then there exists a
minimum chlorination effectiveness r0, satisfying 0 < r0 < 1, such that variable
chlorination is only effective for r0 = r = 1. Furthermore, on this interval, the
minimum chlorination interval for indefinite non-fixed chlorination is always less
than the minimum chlorination interval for regular chlorination.

As a result, the minimal chlorination effectiveness and the minimal chlorination
period can be found in terms of human and bacteria birth and death rates for both
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human and pathogen populations, the carrying capacity for the pathogen popula-
tion, and chlorination and education effectiveness. Also, the “next best” chlorination
event for non-fixed chlorination is derived, by assuming that the time between the
current chlorination and three chlorination events previously is sufficiently large.

5. Numerical Results

In this section, we will study the sensitivity of R0 to different parameters. For the
purpose of simulations, we chose the initial conditions

(S(0), I(0), R(0), P (0)) = (990, 10, 0, 105)

to study the effect of education and discrete chlorination in the long run.

5.1. Sensitivity analysis

Due to the degree of uncertainty in the parameter values, we considered a range
of parameters to examine the dependence of R0 on parameter variation for the
continuous chlorination model. We used Latin Hypercube sampling and partial rank
correlation coefficients (PRCCs) to identify which parameters R0 is most sensitive
to.26 Latin Hypercube Sampling is a statistical sampling method that evaluates
sensitivity of an outcome variable to all input variables. PRCCs measure the relative
degree of sensitivity to each parameter, regardless of whether the parameter has a
positive or negative influence on the outcome variable.

Figure 3 plots PRCCs for each input parameter. This demonstrates that R0 is
most sensitive to variations in ψe, b and µp, respectively. Figure 4 shows that the
disease is reliably controlled only for high education rates.

−0.4 −0.2 0 0.2 0.4 0.6

Human recruitment rate

Education parameter

Human death rate

Recovery rate

Disease death rate

Effective contact rate with infected households

Half the saturation  for infected households

Effective contact rate with contaminated water

Half the saturation for water

Bacteria per capita growth rate

Bacteria shed rate

Bacteria death rate

Fig. 3. Partial rank correlation coefficients indicate that education has the greatest effect on
R0 followed by the bacteria growth and death rates. Parameters with PRCCs > 0 will increase
R0 when they are increased, while parameters with PRCCs < 0 will decrease R0 when they are
increased.
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Fig. 4. Monte Carlo simulations for 1000 runs drawn from parameter ranges using Latin Hyper-
cube Sampling for the three parameters with the greatest effect on R0 as indicated in Fig. 3. If
ψe is sufficiently close to one and the bacteria death rate is sufficiently large, then the disease can
be controlled.
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Fig. 5. Number of infected individuals as a function of time when chlorination is applied weekly
with (ψe, ψr) = (0.75, 0.25), (0.5, 0.5) and (0.25, 0.75) from (a) to (c) respectively. Education is
more effictive than chlorination. Here we consider a growing population with b = 0.75 and µp = 0.6.
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Fig. 5. (Continued)

5.2. Chlorination and education effect

In Fig. 5, we investigate whether education or chlorination is more effective. Con-
sequently, we investigate three scenarios: moderate education and low chlorina-
tion rates (ψe, ψr) = (0.75, 0.25); medium education and chlorination (ψe, ψr) =
(0.5, 0.5); and low education and moderate chlorination (ψe, ψr) = (0.25, 0.75). It
is clear that education is more effective than chlorination in controlling the disease.

In Fig. 6, we plot the minimal effective chlorination period τ̃ as a function of
the chlorination parameter ψr. We found that the minimal effective chlorination
period increases as the efficiency of chlorination increases.
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Fig. 6. Minimal effective chlorination period τ̃ as a function of chlorination parameter ψr when
we need to keep the concentration of bacteria less than or equal 0.25Hi per liter (equivalent to
requiring that only 1/8 of the contacts produce disease). It is clear that the higher the chlorination
rate, the bigger the minimum period of chlorination. Here ψe = 0.6.
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Fig. 7. Bacteria concentration P per liter as a function of time when there is no chlorination and
no education (dashed curve) and bacteria concentration P per liter when 75% effective chlorination
is applied weekly with ψe = 0.6 (solid curve). The concentration of bacteria is tracked for 1400
days (around four years).

In Fig. 7, we track the concentration of bacteria in water with time to show the
effect of daily chlorination. It is clear that the concentration decreases over time.

6. Discussion

In our model, people are either susceptible, infected or recovered. Recovered individ-
uals retain only temporary immunity before becoming susceptible again. V. cholerae
grow logistically with a given carrying capacity. Susceptible individuals may become
infected by drinking dirty water or by exposure to infected individuals. Education
and chlorination are used to control the disease: the former by reducing the trans-
mission rate, the latter by reducing the pathogen directly.

We proposed and investigated an impulsive mathematical model in an attempt
to understand the effects of education and chlorination in controlling cholera. For
the continuous model (no chlorination), the disease-free equilibrium is shown to be
globally stable when the reproduction number is less than one. The comparison the-
orem is used to prove the global stability for the DFE. Center Manifold Theory is
employed to show that if the endemic equilibrium exists then it is locally asymptot-
ically stable when the reproduction number is greater than one and does not exist
when the basic reproduction number is less than one. Moreover, some explicit values
are given for the EE depending on some limiting values for saturation constants.

For the full impulsive model, we used classical methods to solve the impul-
sive ODEs. Values for the minimum effective chlorination times and the effective
chlorination constants are given explicitly for fixed and variable chlorination. The
minimum chlorination period is derived in terms of the model parameters. For
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given values of the parameters, we showed that the effective chlorination time was
2.5 days. It should be noted that we considered the season in which bacteria are
growing for our simulations (the most extreme case).

A sensitivity analysis of the basic reproduction number shows that it is most
sensitive to education, the per capita birth rate and the death rate. The per capita
birth rate is out of our control, but the death rate can be increased by chlorination.
Reducing the concentration of bacteria (by education, sanitization and chlorination)
below the thresholds Hp (inside water) and Hi (outside water) plays a major role
in reducing the disease (Fig. 8).

It should be noted that chlorination and education are not the only methods
of cholera control that have been successful. For example, cloth filters, employed
in 65 rural Bangladeshi villages yielded a 48% reduction in cholera compared to
the control.27 Boiling water before drinking is also effective, as it kills waterborne
pathogenic microoganisms28; however, this is not always possible in rural loca-
tions.27

Our model has some limitations, which should be noted. One limitation is the
estimation of the parameters, a number of which were assumed. Our model also
ignored some important factors like nutrition and environmental factors, which may
play a role in the promotion of disease among poor communities.29 For example, the
disease is more fatal for poor children and for those with inadequate nursing. We
also conflated the effect of household sensitizing and cleaning into the saturation
constants. Direct education was considered uniform and applied equally to human
and pathogen contact. The population mixing pattern, which plays a major role on

Fig. 8. Cartesian plane with the x-axis representing bacteria concentration in water and the
y-axis representing bacteria concentration outside water. Hp and Hi are the half-saturation con-
stants. The first quadrant is divided into four regions depending on the ability to control the
disease.
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disease spread and control, is assumed homogeneous; however, this limitation could
be improved by considering heterogeneous mixing.

In summary, any program to control cholera should consider both chlorina-
tion and education. Education, both direct and indirect, is a critical factor in
cholera control that has a greater and longer-lasting effect on disease management
than technological interventions such as chlorination. Education should therefore
target both human-to-human contact and also the intake of pathogen material.
We thus recommend that any cholera-control program be developed in collabora-
tion with culturally specific population-level education of susceptible and infected
individuals.
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