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Abstract
Hand, foot and mouth disease (HFMD) is a Class C infectious disease that carries
particularly high risk for preschool children and is a leading cause of childhood death
in some countries. We mimic the periodic outbreak of HFMD over a 2-year period—
with differing amplitudes—and propose a dynamic HFMD model that differentiates
transmission betweenmature and immature individuals and uses two possible optimal-
control strategies to minimize case numbers, total costs and deaths. We parameterized
the model by fitting it to HFMD data in mainland China from January 2011 to Decem-
ber 2018, and the basic reproduction number was estimated as 0.9599. Sensitivity
analysis demonstrates that transmission between immature and mature individuals
contributes substantially to new infections. Increasing the isolation rates of infec-
tious individuals—particularly mature infectious individuals—could greatly reduce
the outbreak risk and potentially eradicate the disease in a relatively short time period.
It follows that we have a reasonable chance of controlling HFMD if we can reduce
transmission in children under 7 and isolate older infectious individuals.
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1 Introduction

Hand, foot and mouth disease (HFMD)—caused by a group of enteroviruses (EVs),
includingCoxsackieviruses (A16), human enteroviruses (EV71) andCoxsackieviruses
A4, A5 and B5—is a syndrome with a high risk of infection for preschool children
(McMinn et al. 2001; Chen et al. 2010). During HFMD epidemics, kindergartens and
nurseries are prone to mass infection. It was first reported in New Zealand in 1957
and was named as HFMD in the United States in 1959. The first case of HFMD in
China was reported in Shanghai in 1981. Since then, HFMD has circulated throughout
mainland China, Hong Kong and Taiwan (Zhao et al. 2016). In China, infectious dis-
eases are classified into A, B, C and other infectious diseases according to the speed
of transmission; the degree of harm; and the supervision, monitoring and management
measures that should be undertaken. Class C infectious diseases are those that cause
few deaths and have a small spread range, such as influenza, mumps and filariasis
(Chinese people’s net). OnMay 2, 2008, HFMDwas classified as a Class C infectious
disease in China. The HFMD case number, as well as the death toll, has always been
higher than other Class C infectious diseases, such as influenza,mumps and acute hem-
orrhagic conjunctiva. Symptoms of HFMD include herpes in such body parts as hands,
feet and mouth, fever, headache and sore throat. A few infected individuals progress
to serious illness, such as myocarditis, encephalitis, meningitis and cardiomyopathy
(Mathes et al. 2013). Among childhood infections in China, HFMD has the highest
reported annual incidence (Yang et al. 2017) and is one of the leading causes of death
in childhood infections in some countries (Yang et al. 2017; World Health Organiza-
tion). A total of 2,247,241 cases and 35 deaths of HFMD in children under the age of
7 were reported in China in 2018 (Chinese Center for Disease Control).

Transmission ofHFMD inmainlandChina exhibits complex seasonality (Xing et al.
2014;Zhao andHu2019;Xiao et al. 2016;Zhang et al. 2018;WuandGao2020). In par-
ticular, Xiao et al. found that the incidence of both mild and severe patients decreased
every 2 years, and the periodic changes of these two series could be characterized by
a mixed period of 2 years, 1 year, 6 months or 8 months (Xiao et al. 2016). Since the
incidence of HFMDmay be a combination of many factors such as school term, large
population flow during the Spring Festival, family gatherings, meteorological changes
and multiple transmission routes, HFMD has complex seasonal characteristics. Wu et
al. found that the annual incidence of HFMD in Xiangshan County from 2009 to 2019
and in the Fengxian District of Shanghai from 2012 to 2015 showed a clear 2-year
cycle (Zhang et al. 2018; Wu and Gao 2020). Although HFMD is mainly transmitted
in children under 7 years of age, it can also be transmitted in adults (Chinese Center for
DiseaseControl and Prevention). Children aremore susceptible to infection than adults
because they are less likely than adults to implement self-protection measures or have
proper antibodies. The spread of HFMD is heterogeneous across different age groups
(Zhao et al. 2016, 2021; Xing et al. 2014; Liu et al. 2020; Li et al. 2016, 2023) and the
infection rate is higher in immature individuals. In China, children stay in kindergarten
for the entire day, which leads to high contact rates among these children, although
their classrooms may not be crowded. It is worth emphasizing that elderly infectious
individuals, along with infectious preschool children, contribute substantially to the
new infections of HFMD, but few model studies focus on these populations (Qu et al.
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2018; Wu et al. 2017). Efficient health interventions against HFMD are still far from
adequate, sominimizing the cost of disease burden and the costs of interventions while
containing the spread remains challenging.

The aim of this study is to gain insights into the transmission dynamics of HFMDby
proposing a novel model incorporating two transmission paths. We will consider the
differences in the transmission of HFMDwithin and between the immature andmature
populations, mimic the bi-seasonal pattern of HFMD in mainland China and explore
optimal strategies for controlling HFMD. A number of dynamic models have been
proposed to understand the mechanism of HFMD transmission. Liu (2011) exam-
ined a HFMD model with periodic transmission rate qualitatively and obtained a
threshold determining the extinction and uniform persistence of the disease. Ma et al.
(2013) found that asymptomatic infection plays an important role in the transmission
of HFMD by fitting the proposed periodic model to the HFMD data of Shandong
province. Wang et al. (2016, 2019) proposed a model that included direct and indi-
rect transmission and found that both recessive infected individuals—people infected
with HFMD who are contagious but show no symptoms—and contaminated environ-
ments are important factors leading to new infections of HFMD. Shi et al. (2020)
proposed a periodic model to study the impact of EV71 vaccination on the spread of
multiple pathogenic viruses of HFMD in mainland China and found that the disease
could be eliminated by improving protection measures and medical conditions. Dai
et al. (2019) and Ding et al. (2020) established a periodic model to study the seasonal
spread of HFMD in Wenzhou and found that school opening and meteorological fac-
tors were mainly responsible for the annual multiple-peak pattern of HFMD outbreaks
in Wenzhou. These modelling studies investigated the seasonal infection of HFMD in
mainland China qualitatively or quantitatively by incorporating periodic transmission
rate with 1 year period in the targeted model. However, the number of HFMD infec-
tions in mainland China shows a periodic infection of 2 years, which has been ignored
in the modelling literature thus far.

Some recent papers have used optimal control to study HFMD. Tan and Cao (2018)
applied optimal-control theory to the proposed HFMDmodel and numerically derived
an optimal-control strategy based on minimizing intervention costs and the number
of infected individuals. Ding et al. (2020) studied the optimal-control strategies of
a HFMD model combined with EV-A71 vaccination. By fitting the model to the
HFMD reported data in Wenzhou, China, they obtained optimal-control strategies:
reducing the infection rate, improving the recovery rate, paying attention to personal
hygiene, reducing the contacts of infected and susceptible individuals, strengthening
active treatment and enhancing immune capacity can all help control the epidemic.
Wongvanich et al. (2021) applied two different optimal controls to an SEIRQ model:
onewith treatment only, the other with vaccination and treatment. Unsurprisingly, they
found that less treatment would be required in the second option. Yang et al. (2013)
also proposed an SEIRQ model, with an age cutoff at 14, using control measures for
increasing social-distancing measures, decreasing the quarantine rate and treatment
efforts. They applied themodel to data frommainlandChina and determined that R0 >

1 and hence the disease was persisting. Shi and Lu (2020) developed a fractional-order
SEIR model for HFMD that included a compartment for environmental transmission.
They found that the optimal solution was bang-bang and that treatment resulted in
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less cost in the fractional-order model compared to the integer-order model. Tan et al.
(2023) established a distributed lag nonlinear model with a periodic transmission rate
to study the influence of external factors such as climate and environment on the
transmission of HFMD. They found that several measures can be taken to control the
spread ofHFMD, such as earlywarning at the start of school. These studies focus on the
optimal-control strategies of HFMD. However, few studies investigate the dynamics
of bi-seasonal variations of the disease.

The organization of this paper is as follows. In the next section, we will formulate a
model of HFMD. In Sect. 3, we define the basic reproduction number and investigate
the global stability of disease-free equilibrium as well as the uniform persistence of
the model. The parameterization and sensitivity analysis of the targeted model to the
data are presented in Sect. 4. Section5 focuses on the optimal-control strategy with
two different combined objective functionals. The cases of optimal control, constant
control and without control are compared numerically, and the advantages of optimal
control are highlighted. We discuss the implications of our results in the final section.

2 Model formulation

HFMD was classified as a Class C Infectious Disease by the Ministry of Health of
the People’s Republic of China on May 2nd, 2008. Generally, healthcare workers
determine whether a person is infected with HFMD by observing symptoms such as a
slight fever followed by blisters and ulcers in the mouth and rashes on the hands and
feet. However, confirmed results are determined in the laboratory according to samples
of throat swabs or feces. The newly confirmed cases will be included by the Chinese
Center for Disease Control and Prevention (China CDC) once they enter the hospital
for examination (Chinese Center for Disease Control and Prevention). The confirmed
data is recorded every month or year by all regions in mainland China except Hong
Kong, Macao and Taiwan.

Since children are less likely to be aware of the necessity of self protection anddonot
have sufficient antibodies against HFMD, they are much more susceptible to the virus
than adults. According to the regulations of the primary schools in China, only children
over the age of 6 can be enrolled in school. Hence we divided the whole population
into two subpopulations: infants or children under 7 years old and everyone else. For
simplicity, we call the infants and children under 7 years old immature individuals and
call all other individualsmature individuals.We have collected the data of the monthly
number of new confirmed cases in infants and immature children under 7 years old
from January 2011 to December 2018, as shown in Fig. 1. It follows from Fig. 1 that
there exists a 2-year cycle in the data.

Based on the disease progression and the intervention measures, we extended the
basic SEIR model by considering the difference of HFMD transmission among the
immature population and mature population in mainland China. The total population,
denoted as N , is divided into two groups: immature andmature individuals. The imma-
ture population is denoted as Nc and the mature population is denoted as Na , with
N = Nc + Na . In the following, we adopted the subscript ‘a’ (resp., ‘c’) to indicate
mature-related (resp., immature-related) compartments and parameters. Both Nc and
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Fig. 1 The monthly number of new HFMD cases in children under 7 years old in mainland China (except
Hong Kong, Macao and Taiwan) from January 2011 to December 2018

Na are divided into five compartments: susceptible S, exposed E (infected but not
infectious), infectious I (clinical or subclinical), isolated Q (hospitalized), and recov-
ered R; i.e., Nc = Sc+Ec+Ic+Qc+Rc and Na = Sa+Ea+Ia+Qa+Ra . Susceptible
individuals (Sc, Sa) may be infected by close contact with infected ones (Ic, Ia) and
will enter the exposed compartment (Ec, Ea). Both the exposed immature individuals
(Ec) and exposed mature individuals (Ea) are not infectious, but they will develop into
infectious individuals (Ic, Ia) who may be symptomatic or asymptomatic after a latent
period. If the infected individuals go to hospital for examination, they will be isolated
and enter the quarantine compartment (Qc, Qa) until recovery (Rc, Ra) or death. Due
to the short period of HFMD, we only considered the maturation of immature suscep-
tibles and immature recovered individuals to the corresponding mature compartments
in this work. In addition, there is no lifelong immunity for the recovered individuals,
so we also considered immunity to be temporary. Our model is illustrated in Fig. 2.
Considering that the transmission of HFMD is progressing with the unit of days, we
define the parameters to be with the unit of days, although the data is in months.

Note that the data has a 2-year period and the magnitude of the second year is
significantly larger than that of the first year in each period. On the one hand, Wu et al.
found that the 2-year cycle may be related to the increase in population immunity after
a local HFMD outbreak, with the decrease of immunity and the increase of the number
of susceptibles following (Wu and Gao 2020). Zhang et al. suggested that the rise and
fall of herd immunity may be responsible for the phenomenon of 2-year cycle (Zhang
et al. 2018). On the other hand, we will adopt σcEc in the targeted model to fit the
data on the monthly number of new immature infections in our numerical simulations.
The parameter σc has not been considered to be periodic in existing studies, so it is
reasonable to take Ec as a periodic variable with a 2-year period. Since the natural
death rate is constant, it is reasonable to take the incidence rate as a 2-year periodic
function. Hence we define all incidence rates as functions, which have a period of 2
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Fig. 2 Aschematic flowdiagramof the transmission ofHFMDinmainlandChinawith periodic transmission
and quarantined

years, with a larger amplitude in year two than that in year one, as shown in Fig. 3. In
Fig. 3, the function βcc(t) represents the incidence rate of immature susceptibles (Sc)
after being contact with the immature infectious (Ic). The function βac(t) represents
the incidence rate of immature susceptibles (Sc) after being in contact with the mature
infectious (Ia); the function βca(t) represents the incidence rate of mature susceptibles
(Sa) after being contact with the immature infectious (Ic); and the function βaa(t)
represents the incidence rate of mature susceptibles (Sa) after being contact with the
mature infectious (Ia). We assume the incidence rate βl(t), l ∈ {cc, ac, ca, aa}, is
continuous and non-negative.

It follows from Fig. 1 that the HFMD outbreak in mainland China exhibits a cycle
of 2 years with a higher peak size in the second year in each cycle. We thus construct
a piecewise-defined function to mimic the bi-seasonal transmission rate. We take the
transmission rateβcc(t) as an example in the following to show how these transmission
functions are formulated.We initially construct a function to describe the transmission
rate in the first year (denoted as T1) of each cycle. The variation trend of the data is
similar to the negative value of the sine function, so we adopt

− βcc2 sinω(t + θ), (1)

where βcc2, ω and θ are positive numbers. Since βcc(t) must be positive, we add a
positive constant βcc1 to (1) to get

βcc1 − βcc2 sinω(t + θ), (2)
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Fig. 3 Schematic diagram of the time-series plotting of the function of incidence rate βcc(t)

where βcc1 > βcc2. There are 365 days in a year, so ω = 2π/365 in (2). Given that the
data in the first two months of the first year of each cycle is decreasing, it is reasonable
to treat it as the previous period of the sine function. Then we shift the figure of the
function (2) to the left by 2 months (the first two months of each year), so θ = 59
days, and the transmission rate for the first year in each cycle takes the form

βcc1 − βcc2 sin
2π

365
(t + 59). (3)

The transmission rate for the second year in each cycle (denoted as T2) is similar to
(3) but with a higher amplitude. We obtain from Fig. 1 that the minimum number of
infections in the first and second years of each cycle is roughly equal, although their
peak size is different, so we introduce parameter c1 to ensure that the waves in each
year have the same minimum but different peak values. Thus the transmission rate for
the second year takes the form

c1
[
βcc1 − βcc2 sin

2π

365
(t + 59)

]
+ (1 − c1)(βcc1 − βcc2). (4)

Hence the transmission rate βcc(t) is defined as following

βcc(t) =
{

βcc1 − βcc2 sin
2π(t+59)

365 , t ∈ T1,

c1
[
βcc1 − βcc2 sin

2π(t+59)
365

]
+ (1 − c1)(βcc1 − βcc2), t ∈ T2,

(5)
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where T1 (resp., T2) stands for the days of the first year (resp., the second year) of each
cycle. If the time t falls in the first year of a cycle so that t ∈ T1, then βcc(t) takes the
form (3); otherwise, if the time t falls in the second year of a cycle so that t ∈ T2, then
βcc(t) takes the form (4). It follows that βcc(t) is bounded between βcc1 − βcc2 and
βcc1 + βcc2.

The incidence rates βl(t), l ∈ {ac, ca, aa}, are defined as follows

βac(t) =
{

βac1 − βac2 sin
2π(t+59)

365 , t ∈ T1,

c2
[
βac1 − βac2 sin

2π(t+59)
365

]
+ (1 − c2)(βac1 − βac2), t ∈ T2.

(6)

βca(t) =
{

βca1 − βca2 sin
2π(t+59)

365 , t ∈ T1,

c3
[
βca1 − βca2 sin

2π(t+59)
365

]
+ (1 − c3)(βca1 − βca2), t ∈ T2,

(7)

βaa(t) =
{

βaa1 − βaa2 sin
2π(t+59)

365 , t ∈ T1,

c4
[
βaa1 − βaa2 sin

2π(t+59)
395

]
+ (1 − c4)(βaa1 − βaa2), t ∈ T2.

(8)

It can be seen from the establishment process of formula (4) that βcc1 plays an impor-
tant role in (4). We similarly get that βac1 is a key parameter of (6). In Sect. 4.2, we
will examine the effect of βcc1 and βac1 in the spread of HFMD in mainland China. It
follows that our targeted model takes the following form

dSc(t)

dt
= � − λc(t)Sc − μSc − φSc + ρc Rc,

dEc(t)

dt
= λc(t)Sc − μEc − σcEc,

d Ic(t)

dt
= σcEc − qc Ic − γc1 Ic − μIc − αc1 Ic,

dQc(t)

dt
= qc Ic − γc2Qc − μQc − αc2Qc,

dRc(t)

dt
= γc1 Ic + γc2Qc − μRc − φRc − ρc Rc,

dSa(t)

dt
= φSc − μSa + ρa Ra − λa(t)Sa,

dEa(t)

dt
= λa(t)Sa − μEa − σa Ea,

d Ia(t)

dt
= σa Ea − qa Ia − γa1 Ia − μIa − αa1 Ia,

dQa(t)

dt
= qa Ia − γa2Qa − μQa − αa2Qa,

dRa(t)

dt
= φRc + γa1 Ia + γa2Qa − μRa − ρa Ra,

(9)
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where

λc(t) = βcc(t)Ic
Nc

+ βac(t)Ia
Nc

, λa(t) = βca(t)Ic
Na

+ βaa(t)Ia
Na

.

The detailed definitions and description of all parameters are shown in Table 1. In
Sect. 4.1, we will show in detail how the least-squares method is adopted to estimate
the unknown parameters.

3 Dynamic analysis

All solutions of model (9) are non-negative with non-negative initial values. In this
section, we initially define the basic reproduction number of the target model based
on the positiveness and ultimately boundedness of the solutions. Then we examine the
global stability of the disease-free equilibrium and the existence of positive periodic
solutions of model (9). To this end, we initially give the following definitions.

Definition 1 (Zhao 2003) The matrix D is cooperative if it has nonnegative off-
diagonal entries.

Definition 2 (Huang and Yang 2007) Suppose D is a matrix of order n(n ≥ 2). Then
matrix D is irreducible if there does not exist a permutation matrix P such that

PDPT =
[
A11 A12
0 A22

]

is a partitioned upper triangular matrix, where A11 is a square matrix of order r and
A22 is a square matrix of order n − r , 1 ≤ r ≤ n, and T represents the transpose of
the matrix.

Denote

X = {(Sc, Ec, Ic, Qc, Rc, Sa, Ea, Ia, Qa, Ra) : Sc ≥ 0, Ec ≥ 0, Ic ≥ 0,

Qc ≥ 0, Rc ≥ 0, Sa ≥ 0, Ea ≥ 0, Ia ≥ 0, Qa ≥ 0, Ra ≥ 0
}
,

X0 = {(Sc, Ec, Ic, Qc, Rc, Sa, Ea, Ia, Qa, Ra) ∈ X : Ec > 0, Ic > 0, Ea > 0, Ia > 0
}
.

Lemma 1 The solutions are uniformly and ultimately bounded for system (5); i.e.,
there exists t1 > 0, such that

(Sc(t), Ec(t), Ic(t), Qc(t), Rc(t), Sa(t), Ea(t), Ia(t), Qa(t), Ra(t))

≤
(

�

d
,
�

d
,
�

d
,
�

d
,
�

d
,
�

d
,
�

d
,
�

d
,
�

d
,
�

d

)

for all t ≥ t1.
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Proof For system (5), the total population N (t) satisfies the following equation

N ′ = � − μN − αc1 Ic − αc2Qc − αa1 Ia − αa2Qa ≤ � − μN ,

so we have

N ≤ �

μ
− ce−μt ,

where c is an arbitrary constant. Hence, there exists T > 0 such that

S j (t) ≤ �

μ
, E j (t) ≤ �

μ
, I j (t) ≤ �

μ
, Q j (t) ≤ �

μ
, R j (t) ≤ �

μ
, j ∈ {c, a}

for t ≥ T . Therefore, the solutions are uniformly and ultimately bounded. ��
Lemma 2 Both X and X0 are positive invariant sets.

Proof We prove that X0 is positively invariant; the positive invariance of X can be

obtained similarly. For any initial condition
(
S0c , E

0
c , I

0
c , Q0

c, R
0
c , S

0
a , E

0
a , I

0
a , Q0

a, R
0
a

)

∈ X0, if there is t1 ≥ 0 such that

Sc(t1) = 0, Ec(t1) ≥ 0, Ic(t1) ≥ 0, Qc(t1) ≥ 0, Rc(t1) ≥ 0

Sa(t1) ≥ 0, Ea(t1) ≥ 0, Ia(t1) ≥ 0, Qa(t1) ≥ 0, Ra(t1) ≥ 0,

then we have dSc(t1)
dt > 0. Hence, we have Sc(t) ≥ 0 for all t ≥ 0 and so

Ec(t) = e−(σc+μ)t
[
E0
c +

∫ t

0
(λc(s1)Sc(s1)e

(σc+μ)s1ds1

]
≥ E0

c e
−(σc+μ)t > 0,

Ic(t) = e−(qc+γc1+μ+αc1 )t
[
I 0c +

∫ t

0
σcEc(s1)e

(qc+γc1+μ+αc1 )s1ds1

]

≥ I 0c e
−(qc+γc1+μ+αc1 )t > 0,

Qc(t) = e−(γc2+μ+αc2 )t
[
Q0

c +
∫ t

0
qc Ic(s1)e

(γc2+μ+αc2 )s1ds1

]

≥ Q0
ce

−(γc2+μ+αc1 )t ≥ 0,

Rc(t) = e−(μ+φ+ρc)t
[
R0
c +

∫ t

0
(γc1 Ic(s1) + γc2Qc(s1))e

(μ+φ+ρc)s1ds1

]

≥ R0
c e

−(μ+φ+ρc)t ≥ 0

for all t > 0, where λc(t) = βcc(t)
Ic
Nc

+ βac(t)
Ia
Nc

and λa(t) = βca(t)
Ic
Na

+ βaa(t)
Ia
Na

.

We similarly get Sa(t) ≥ 0, Ea(t) > 0, Ia(t) > 0, Qa(t) ≥ 0, Ra(t) ≥ 0. Thus X0 is
positively invariant. ��
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It follows from Lemmas 1 and 2 that the set

X1 ≡
{
(Sc, Ec, Ic, Qc, Rc, Sa, Ea, Ia, Qa, Ra) : 0 ≤ Sc ≤ �

μ
,

0 ≤ Ec ≤ �

μ
,

0 ≤ Ic ≤ �

μ
, 0 ≤ Qc ≤ �

μ
, 0 ≤ Rc ≤ �

μ
,

0 ≤ Sa ≤ �

μ
, 0 ≤ Ea ≤ �

μ
, 0 ≤ Ia ≤ �

μ
,

0 ≤ Qa ≤ �

μ
, 0 ≤ Ra ≤ �

μ

}

is positively invariant.
Let (Rn, R

n+) be the standard ordered n-dimensional Euclidean space with a norm
‖.‖. For u, v ∈ R

n , we denote u ≥ v for u − v ∈ R
n+; u > v for u − v ∈ R

n+\{0};
u 
 v for u − v ∈ Int(Rn+). Consider A(t) to be a continuous, cooperative, irre-
ducible and periodic n × n matrix function with period ω > 0. Let 
A(.)(t) be the
fundamental solution matrix of the linear ordinary differential equation x ′ = A(t)x
and let r

(

A(.)(ω)

)
be the spectral radius of 
A(.)(ω). By the Perron–Frobenius theo-

rem, r
(

A(.)(ω)

)
is the principle eigenvalue of 
A(.)(ω) in the sense that it is simple

and admits an eigenvector v∗ 
 0.

Lemma 3 (Zhang andZhao 2007) There exists a positiveω-periodic function v(t) such
that eθv tv(t) is a solution of the equation x ′ = A(t)x with θv = 1

ω
ln r
(

A(.)(ω)

)
,

where the matrix A(t) is continuous, cooperative and irreducible.

We next define the basic reproduction number R0 of model (9) by the result in
Wang and Zhao (2008). The compartments related to new infections for model (9) are
Ec, Ic, Ea, Ia , so the relevant differential equations are

dEc(t)

dt
= βcc(t)Sc Ic

Nc
+ βac(t)Sc Ia

Nc
− μEc − σcEc,

d Ic(t)

dt
= σcEc − qc Ic − γc1 Ic − μIc − αc1 Ic,

dEa(t)

dt
= βca(t)Sa Ic

Na
+ βaa(t)Sa Ia

Na
− μEa − σa Ea,

d Ia(t)

dt
= σa Ea − qa Ia − γa1 Ia − μIa − αa1 Ia .

(10)

Denote Z = (Ec(t), Ic(t), Ea(t), Ia(t)) so that Ż = G(Z). Let G(Z) = F − V ,
where F represents the vector of new infections and V represents the vector of all
other transitions. We have
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43 Page 14 of 56 A. Wang et al.

F =

⎡
⎢⎢⎢⎣

βcc(t)Sc Ic
Nc

+ βac(t)Sc Ia
Nc

0
βca(t)Sa Ic

Na
+ βaa(t)Sa Ia

Na

0

⎤
⎥⎥⎥⎦ ,

V =

⎡
⎢⎢⎣

(σc + μ)Ec

−σcEc + (qc + γc1 + μ + αc1

)
Ic

(σa + μ)Ea

−σa Ea + (qa + γa1 + μ + αa1

)
Ia

⎤
⎥⎥⎦ .

Differentiating F and V with respect to Z and computing them at the disease-free
equilibrium gives

F(t) =

⎡
⎢⎢⎣
0 βcc(t) 0 βac(t)
0 0 0 0
0 βca(t) 0 βaa(t)
0 0 0 0

⎤
⎥⎥⎦ ,

V (t) =

⎡
⎢⎢⎣

σc + μ 0 0 0
−σc qc + γc1 + μ + αc1 0 0
0 0 σa + μ 0
0 0 −σa qa + γa1 + μ + αa1

⎤
⎥⎥⎦ .

Linearizing model (9) at the disease-free equilibrium E0
(

�
φ+μ

, 0, 0, 0, 0, �φ
μ(φ+μ)

,

0, 0, 0, 0
)
gives the following four-dimensional equations:

dEc(t)

dt
= βcc(t)Ic + βac(t)Ia − μEc − σcEc,

d Ic(t)

dt
= σcEc − qc Ic − γc1 Ic − μIc − αc1 Ic,

dEa(t)

dt
= βca(t)Ic + βaa(t)Ia − μEa − σa Ea,

d Ia(t)

dt
= σa Ea − qa Ia − γa1 Ia − μIa − αa1 Ia,

(11)

which is equivalent to dZ
dt = (F(t) − V (t))Z .

For the linear periodic system

dx

dt
= −V (t)x,

suppose that X(t, s), t ≥ s is the evolutionary operator in the system (i.e., dX(t,s)
dt =

−V (t)X(t, s) for all t ≥ s) and satisfies X(s, s) = I , where I is the 4 × 4 identity
matrix. Let Cω be the ordered Banach space of all ω-periodic functions from R to R

4.
Denote the positive cone
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C+
ω =

{
ψ ∈ Cω : ψ(t) ≥ 0, for all t ∈ R

}

where C+
ω is equipped with the maximum norm ‖.‖. Denote the initial distribution

of the first infectious individuals in the periodic environment as ψ(s) ∈ Cω, so the
distribution of the new infections resulting from infected individuals introduced at
time s is F(s)ψ(s), and X(t, s)F(s)ψ(s) is the distribution of those new infections
at time s that are still in the infectious compartments at time t for t ≥ s. Thus

φ(t) ≡
∫ t

−∞
X(t, s)F(s)ψ(s)ds =

∫ ∞

0
X(t, t − a)F(t − a)ψ(t − a)da

is the distribution of the total new infections at time t resulting from those infectious
individuals ψ(s) introduced before t .

Following Jing et al. (2020), define the linear operator L : Cω → Cω as follows:

(Lψ)(t) =
∫ ∞

0
X(t, t − a)F(t − a)ψ(t − a)da, ψ ∈ Cω

for all t ∈ R. For the periodic epidemic model (9), the basic reproduction number is
the spectral radius of L; i.e.,

R0 = r(L). (12)

Formula (12) provides an implicit expression of the basic reproduction num-
ber R0, which depends on many parameters, such as the transmission rates
βcc(t), βac(t), βca(t), βaa(t), the isolation rates qc, qa and so on. It will be computed
numerically in Sect. 4.1.

For the following linear ω-periodic system

dy

dt
=
(

−V (t) + F(t)

λ

)
y, t ∈ R, (13)

let Y (t, λ) be the monodromy matrix with λ ∈ (0,∞). It is easy to prove that F(t) is
non-negative and−V (t) is cooperative, so r(Y (ω, λ)) is continuous and nonincreasing
for λ ∈ (0,∞) and limλ→0 r(Y (ω, λ)) < 1. According to Wang and Zhao (2008), it
is not difficult to prove that model (9) satisfies conditions A(1)–A(7). Then we get the
following conclusion.

Lemma 4 (Wang and Zhao 2008, Theorem 2.1) For system (9), we have:

(i) If there exists one positive solution λ0 for r(Y (ω, λ)) = 1, then λ0 is an eigen-
value of L, so R0 > 0.

(ii) If R0 > 0, then λ = R0 is the unique solution of r(Y (ω, λ)) = 1.
(iii) R0 = 0 if and only if r(Y (ω, λ)) < 1 for all λ > 0.
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Let Y (t, s, λ), t ≥ s be the evolution operator of system (13) on R
4. Clearly,


F−V (t) = Y (t, 0, 1), t ≥ 0. Hence, we derive


F/λ−V (t) = Y (t, 0, λ). (14)

It follows from Lemma 4 that the basic reproduction number R0 is the unique solution
of the equation with respect to λ; i.e., r(Y (ω, 0, λ)) = 1. The next result is fromWang
and Zhao (2008).

Lemma 5 For system (9), we have:

(i) R0 = 1 if and only if r(
F−V (ω)) = 1;
(ii) R0 > 1 if and only if r(
F−V (ω)) > 1;
(iii) R0 < 1 if and only if r(
F−V (ω)) < 1.

When R0 < 1, E0 is locally asymptotically stable,whereas E0 is unstable if R0 > 1.
Next, we investigate the global stability of E0. Let f : X → X be a continuous

map and

∂X0 ≡ X\X0, M∂ ≡
{
x ∈ ∂X0 : f n(x) ∈ ∂X0, n ≥ 0

}
.

Suppose that there exists a maximal compact invariant set A∂ of f in ∂X0. If there
exists a Morse decomposition M ≡ {M1, M2, ..., Mk} of A∂ , then M is an acyclic
covering of �(M∂ ), whereM is a finite sequence of disjoint, compact, invariant and
isolated subsets of ∂X0, �(M∂ ) ≡⋃x∈M∂

ω(x) and ω(x) represents the omega limit
set of x . We initially present the following persistence theory from Zhao (2003) for
the convenience of our following proof.

Lemma 6 Assume that

(C1) f (X0) ⊂ X0 and there is a global attractor A for f ;
(C2) The maximal compact invariant set A∂ = A∩ M∂ of f in ∂X0, possibly empty,

admits aMorse decomposition {M1, M2, ..., Mk}with the following properties:
(a) Mi is isolated in X; (b) Ws(Mi ) ∩ X0 = ∅ for each 1 ≤ i ≤ k, where
Ws(Mi ) = {x ∈ X : limn→∞ d( f n(x), Mi ) = 0} represents the stable set of
Mi , d(x, Mi ) ≡ inf y∈Mi d(x, y).

Then there exists a δ > 0 such that for any compact internally chain transitive set L
with L � Mi for all 1 ≤ i ≤ k, we have infx∈L d(x, ∂X0) > δ; that is, f : X → X
is uniformly persistent with respect to (X0, ∂X0).

Theorem 1 If R0 < 1, E0 is globally asymptotically stable, whereas E0 is unstable if
R0 > 1.

Proof According to Lemma 5, E0 is locally asymptotically stable for R0 < 1. So we
only need to prove that E0 is globally attractive. Since

Sc
Nc

≤ Sc
Sc

= 1 and Sa
Na

≤ Sa
Sa

= 1,
we have the following inequalities

dEc(t)

dt
≤ βcc(t)Ic + βac(t)Ia − μEc − σcEc,
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d Ic(t)

dt
= σcEc − qc Ic − γc1 Ic − μIc − αc1 Ic,

dEa(t)

dt
≤ βca(t)Ic + βaa(t)Ia − μEa − σa Ea,

d Ia(t)

dt
= σa Ea − qa Ia − γa1 Ia − μIa − αa1 Ia .

Consider the following auxiliary system:

dm1

dt
= βcc(t)m2 + βac(t)m4 − (μ + σc)m1,

dm2

dt
= σcm1 − (qc + γc1 + μ + αc1)m2,

dm3

dt
= βca(t)m2 + βaa(t)m4 − (μ + σa)m3,

dm4

dt
= σam3 − (qa + γa1 + μ + αa1)m4.

(15)

Denote

A(t) =

⎡
⎢⎢⎣

−(σc + μ) βcc(t) 0 βac(t)
σc −(qc + γc1 + μ + αc1) 0 0
0 βca(t) −(σa + μ) βaa(t)
0 0 σa −(qa + γa1 + μ + αa1)

⎤
⎥⎥⎦ ,

and note that A(t) is continuous since βcc(t), βac(t), βca(t) and βaa(t) are continuous.
We further know that A(t) is cooperative according to Definition 2.1. Then we claim
A(t) is irreducible. In fact, for the permutation matrix

B =

⎡
⎢⎢⎣
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ ,

direct calculation yields that

BA(t)BT =

⎡
⎢⎢⎣

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

−(σc + μ) βcc(t) 0 βac(t)
σc −(qc + γc1 + μ + αc1 ) 0 0
0 βca(t) −(σa + μ) βaa(t)
0 0 σa −(qa + γa1 + μ + αa1 )

⎤
⎥⎥⎦×
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⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

−(σa + μ) 0 βca(t) βaa(t)
0 −(σc + μ) βcc(t) βac(t)
0 σc −(qc + μ + αc1 + γc1 ) 0
σa 0 0 −(qa + μ + αa1 + γa1 )

⎤
⎥⎥⎦

is not a block upper triangular matrix. Similarly, for any permutation matrix B,
BA(t)BT is not a block upper triangular matrix. Thus, by Lemma 3, there exists a pos-
itive ω-periodic function m(t) = (m1(t),m2(t),m3(t),m4(t)) such that eθ1tm(t) is a
solution of system (15), where θ1 = 1

ω
ln r(
A(ω)). Note that A(t) = F(t)−V (t), so

θ1 = 1
ω
ln r
(

F−V (ω)

)
. By the comparison theorem, we have J (t) ≤ eθ1tm(t), where

J (t) = (Ec(t), Ic(t), Ea(t), Ia(t)
)T and T represents the transpose of the matrix. By

Lemma 5, if R0 < 1, then r
(

F−V (ω)

)
< 1, so θ1 < 0. Hence, we have

lim
t→∞ Ec(t) = 0, lim

t→∞ Ic(t) = 0, lim
t→∞ Ea(t) = 0, lim

t→∞ Ia(t) = 0.

Substituting into system (9), we obtain

dQc

dt
< 0,

dRc

dt
< 0,

dQa

dt
< 0,

dRa

dt
< 0,

so

lim
t→∞ Qc(t) = 0, lim

t→∞ Rc(t) = 0, lim
t→∞ Qa(t) = 0, lim

t→∞ Ra(t) = 0.

For the first and sixth equation of system (9), we have

lim
t→∞ Sc(t) = �

φ + μ
, lim
t→∞ Sa(t) = �φ

μ(φ + μ)
.

Thus, E0 is globally attractive for R0 < 1, and so E0 is globally asymptotically stable.
��

Theorem 2 When R0 > 1, there is at least one positive periodic solution for model
(9).

See Appendix A for proof.

4 Numerical simulations

4.1 Parameter estimation andmodel fitting

In this section, we estimate the initial conditions and the values for all parameters.
The initial conditions for the variables Sc, Rc, Sa, Ra can be obtained directly from the
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data. The initial values of Qc and Qa as well as values of the parameters �,μ, φ, αc1
and αc2 will be calculated from the data. The values of the parameters γc1 and γc2 are
taken from the literature. The values of the parameters αa1, αa2, γa1 and γa2 will be
assumed based on the transmission ofHFMD inmainlandChina. The initial conditions
of the other variables as well as the values of the other parameters will be estimated
using our targeted model (9).

The surveillance system provides data on HFMD cases in mainland China every
month. To fit our targeted model (9) to the data, we initially analyze the data to set
the initial values for the state variables; i.e., the value of the state variables in 2011.
According to the 7th census of the National Bureau of Statistics of China, the total
population in 2010 was 1,339,720,000 (National Bureau of Statistics of China). Note
that the number of children under 7 years old accounted for approximately 7.89%
of the total population, so we derive the number of mature susceptible individuals in
2011 to be Sa(0) = 1,339,720,000 × (1 − 7.89%) = 1,234,016,092. We determine
the number of immature recovered individuals by calculating the total number of
immature individuals who were infected before 2011 and still less than 7 years old
in 2011; i.e., Rc(0) = 3,062,932. The number of immature susceptible individuals
in 2011 is then Sc(0) = 102,640,976. We similarly calculate the number of mature
recovered individuals in 2011 as Ra(0) = 459,597. When the number of immature
infectious individuals (Ic) and the isolation rate of Ic (i.e., qc) are estimated, we can
calculate the number of immature isolated individuals as following Qc = qc × Ic, and
we can similarly calculate the number of mature isolated individuals Qa . We obtain
the annual birth rate, calculate the average and divide it by 365 to get the recruitment
rate of susceptible individuals per day,� = 43,679. Assume that the average life span
of the population is 77 years, we calculate the natural death rate as μ = 3.56× 10−5.
Since we have defined the population under the age of 7 as the immature infected
population, the progression rate from immature population to mature population is
φ = 3.9139 × 10−4. We calculate the ratio of the disease-induced deaths to the case
number per month from 2011 to 2018 and average it to obtain the disease-induced
death rate of the immature individuals, i.e., αc1 = αc2 = 0.4554 × 10−5. Since the
death among the mature infecteds is rare, we assume the disease-induced death rate
of the mature individuals is αa1 = αa2 = 0. For simplicity, we assume the recovery
rates of mature infectious and isolated individuals (i.e., γa1 and γa2) are equal to the
recovery rates of immature infectious and isolated individuals (i.e., γc1 and γc2). The
data we used for fitting is relatively limited, so we make this assumption although
in truth the antibodies in mature individuals would likely lead to a relatively higher
recovery rate. All the other parameters were estimated or from the references.

We next conducted data fitting using our targeted model to estimate the values of
the parameters. There are generally three parameter-estimationmethods: least squares,
maximum likelihood estimation, and Bayesian estimation of which the least-squares
method is easiest, minimizing the sum of squares of errors between the simulated and
the actual data (Johnson and Faunt 1992). The objective function is

f (�) =
k=n∑
k=1

(C̃(Tk) − C(Tk))
2,
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Fig. 4 Fitting result for the data on the monthly number of new HFMD cases in immature individuals in
mainland China from January 2011 to December 2018

where� is the vector of parameters to be estimated and n is the length of the epidemic
data. Here n = 96, since we used data from January 2011 to December 2018, lasting
for 96 months. Tk is the corresponding month of the k-th month from January 2011
to December 2018. C̃(Tk) represents the actual monthly number of HFMD cases on
date Tk , andC(Tk) is the estimated monthly number of HFMD cases on the date Tk . In
China, once immature individuals are infected with HFMD, almost all of them will go
to the hospital for treatment, which results in them being recorded by China’s CDC,
so the data used for fitting is that of newly infected immature individuals. Thus the
dynamics of C(t) are governed by

C(t) = σcEc.

By fitting our targeted model to the HFMD data on the monthly number of new
cases from January 2011 to December 2018, we obtained estimates of all unknown
parameters. For parameter fitting, we adjust the value ranges of the parameters to
be estimated and apply multiple restarts with our least-squares approach. Using the
approximate degree of the fitting curve, we obtained a satisfactory fitting result of
model (9) to the HFMD data, as shown in Fig. 4. In Fig. 4, the thin blue boxes represent
the monthly number of new HFMD cases in mainland China from January 2011 to
December 2018, and the best fitting curve is represented by a dark blue solid line,
indicating that our target model captures the data well. The estimated values for the
unknown parameters and initial conditions for the variables were reported in Table 1.
The incidence rate were estimated as follows:
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βcc(t)

=

⎧
⎪⎪⎨
⎪⎪⎩

1.1800 × 10−1 − 1.1400 × 10−1 sin
2π(t + 59)

365
, t ∈ T1,

1.1400

[
1.1800 × 10−1 − 1.1400 × 10−1 sin

2π(t + 59)

365

]
− 5.6000 × 10−4, t ∈ T2.

βac(t)

=

⎧⎪⎪⎨
⎪⎪⎩

3.0400 × 10−1 − 2.3500 × 10−2 sin
2π(t + 59)

365
, t ∈ T1,

1.1505

[
3.0400 × 10−1 − 2.3500 × 10−2 sin

2π(t + 59)

365

]
− 4.2220 × 10−2, t ∈ T2.

βca(t)

=

⎧⎪⎪⎨
⎪⎪⎩

3.1486 × 10−4 − 1.0000 × 10−5 sin
2π(t + 59)

365
, t ∈ T1,

1.5000

[
3.1486 × 10−4 − 1.0000 × 10−5 sin

2π(t + 59)

365

]
− 1.5000 × 10−4, t ∈ T2,

βaa(t)

=

⎧
⎪⎪⎨
⎪⎪⎩

1.1585 × 10−1 − 4.0000 × 10−3 sin
2π(t + 59)

365
, t ∈ T1,

1.2001

[
1.1585 × 10−1 − 4.0000 × 10−3 sin

2π(t + 59)

365

]
− 2.2380 × 10−2, t ∈ T2.

It should be noted that the data on the monthly number of new cases we used to fit
the model are not very regular in periodicity, and there are a few outliers. In addition,
in order to improve the stability of the parameter estimates used in this work, we
selected a relatively large amount of 8-year real data; i.e., 96 months of data, for
fitting. Parameter estimation for our model is difficult: there are many parameters that
need to be estimated, and the periodic incidence rates are complex and time dependent,
which increases the difficulty of parameter estimation. In addition, multi-year data on
HFMD cases are fitted simultaneously, and the high dimensionality and nonlinearity
of the target model (5) and the standard incidence rates are different, which also
increases the difficulty of parameter estimation. In fact, all the issues—including the
high dimensionality and nonlinearity of the target model, the large amount of data, the
time dependence and nonlinearity of many parameters—mean that running once takes
a long time, occupying large computer memory, so it is not easy to find relatively good
fitting results. However, we provide a qualitatively acceptable visual fit, as shown in
Fig. 4. In addition, with these parameter values, we can estimate the basic reproduction
number R0 = 0.9599 < 1, which is only slightly below the threshold, so it is unlikely
that HFMDwill go extinct any time soon. In addition, we also calculated the effective
reproduction number Rt from 2011 to 2018 and found that Rt is not always less than
1 but is greater than 1 during the annual HFMD epidemic, as shown in Fig. 5. The
light gray bars represent the data on the number of immature infections in China from
2011 to 2018, and the yellow solid curve represents the effective reproduction number
Rt . The effective reproduction number Rt is obtained by using the next-generation
method, and it takes the form Rt = a+b+c

2 , where
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Fig. 5 Effective reproduction number Rt from January 2011 to December 2018

a = σcβcc(t)

(σc + d)(qc + d + γc1 + γc2)
, b = σaβaa(t)

(σa + d)(qa + d + γa1 + γa2)
,

c =
√

(a − b)2 + 4e f ,

e = σaβac(t)

(σa + d)(qa + d + γa1 + γa2)
, f = σc(t)βca(t)

(σc + d)(qc + d + γc1 + γc2)
.

To further illustrate statistically that the incidence with the 2-year cycle can fit the data
better than the incidence with the 1-year cycle, we also adopt the latter incidence to fit
the data. The details are in the Appendix E. The AIC value of the model with a 1-year
period is 2342.6, which is 7.09% greater than 2326.1, the AIC value of the model with
a 2-year period, justifying our choice of a 2-year transmission rate period.

4.2 Sensitivity analysis

In order to study the effect of hygiene-prevention measures (such as hand washing,
irregular cleaning and disinfection of frequently touched surfaces, etc.), enhanced
media reporting, timely hospitalization and enhanced viral-load-detection technolo-
gies in containing the HFMD spread in mainland China, we explore the impact of
periodic transmission rates between immature infectious and susceptible individu-
als (i.e., βcc2(t)) or between mature infectious and immature susceptible individuals
(i.e., βac2(t)); the isolation rate of immature infectious individuals (i.e., qc); and the
progression rate from immature exposed to infectious individuals (i.e., σc). If the pro-
tective measures are relaxed or the control measures are strengthened, the contact rate
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Fig. 6 Relative changes in peak size of the newly number of immatureHFMDcases as a βcc2(t) is increased
by 4%, 8% and 12%, b βac2(t) is increased by 20%, 40% and 60%, c qc is raised by 4%, 8% and 12%,
and d σc is increased by 4%, 8% and 12%, of its baseline value. Other parameters are given in Table 1. The
grey dashed lines indicate the value 1

between immature individuals (βcc2(t)) or the isolation rate of immature infecteds
(qc) increases; if the viral load detection of HFMD is improved, the incubation period
(1/σc) decreases. We assume that βcc, qc and σc increase by 4%, 8% and 12%, respec-
tively, from the baseline.Once themeasures are relaxed, contacts between adultswould
increase significantly because they need to go out for work. Moreover, they do not
pay enough attention to HFMD, since it is a disease mainly transmitted among imma-
ture individuals, so we assume that the variation in the transmission from the mature
infectious individuals is greater. In our simulations, we assume the transmission rate
from mature infectious individuals to immature susceptibles (i.e., βac2) increases by
20%, 40% and 60% from the baseline value. The subsequent analysis shows that the
number of new infections is not sensitive to the parameter βac2, which further supports
the selection of a larger factor for βac2. We thus conducted a sensitivity analysis based
on the above variation to show what would happen, as illustrated in Figs. 6 and 7.
In Figs. 6 and 7, the baseline value 1 refers to the outcome based on the parameter
values reported in Table 1; relative values in Fig. 6 (resp., Fig. 7) represent the ratios
of the peak sizes (resp., cumulative number) of new infections in 2017–2018 to the
baseline values. Figures6a and 7a show that a small increase in the transmission rate
from immature infectious to susceptible individuals would lead to a large increase
in new infections, demonstrating that the incidence of HFMD cases is very sensitive
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Fig. 7 Relative changes in the cumulative number of immature HFMD cases as a βcc2(t) is increased by
4%, 8% and 12%, b βac2(t) is increased by 20%, 40% and 60%, c qc is raised by 4%, 8% and 12%, and d
σc is increased by 4%, 8% and 12%, of its baseline value. Other parameters are given in Table 1. The grey
dashed lines indicate the value 1

to the transmission rate between immature infectious and susceptible individuals. In
fact, a 12% increase in parameter βcc2 leads to a 57.04% and 43.52% increase in the
peak size and cumulative number of infections in 2017–2018, respectively. Figures6b
and 7b show that a large change in the transmission rate between mature infectious
individuals and immature susceptible individuals would only result in a slight increase
in new infections. In particular, a 60% increase in parameter βac2 could only lead to
a 5.59% and 4.28% increase in the peak size and cumulative number of infections
in 2017–2018, respectively. It follows from Figs. 6c and 7c that increasing the iso-
lation rate of immature infectious individuals would lead to a significant decline in
new infections, whereas Figs. 6d and 7d indicate that decreasing the incubation period
(1/σc) would result in a slight increase in new infections. The main results demon-
strate that the transmission between immature individuals has a significant impact on
the spread of HFMD, whereas transmission between mature infectious and immature
susceptible individuals has a weak effect on the spread of the disease. Transmission
between immature individuals thus plays a key role in the HFMD spread. All these
factors have a more significant effect on the peak size than on the cumulative size.

To further investigate the impact of some key factors on HFMD outbreaks, we
analyzed the sensitivity of the average monthly number of the immature infectious
individuals with respect to the corresponding parameters. We computed the partial
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Fig. 8 Partial rank correlation coefficients (PRCCs) of the average monthly number of immature infectious
individuals. The four significant parameters are noted

rank correlation coefficients (PRCCs) using Latin Hypercube Sampling (LHS). By
computing the rank-transformed LHS matrix and the output matrix, we calculated
PRCCs, which allows us to assess whether one parameter has significant effect on the
average monthly number of the immature infectious individuals. LHS was performed
with 5,000 bins and 2920 simulations per sampling, as shown in Fig. 8. We consid-
ered absolute values of PRCCs greater than 0.4 as indicating significant correlations
between the parameters and the average monthly number of immature infectious indi-
viduals, values between 0.2 and 0.4 as moderate correlations, and values less than
0.2 as not significant. In the first half of Sect. 4.2, we show that the number of new
infections of HFMD is related to the infection rate between immature individuals
βcc(t) or between immature susceptible individuals and mature infected individuals
βac(t). In fact, these two transmission-rate functions contain many parameters, so
which specific parameter has a greater impact on the transmission of HFMD is still
unclear. Therefore, we have analyzed each parameter of the infection rate function
here. Figure8 indicates that most significant parameters are βcc1, the transmission
rate between immature infectious individuals and immature susceptibles; βaa1, the
transmission rate between mature infectious individuals and mature susceptibles; qc,
the isolation rate of immature infectious individuals; and γc1, the recovery rate of
immature infectious individuals.

In order to reveal how the periodic transmission and the control measures affect the
outbreak risk of HFMD in mainland China, we qualitatively assessed the exact impact
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Fig. 9 Sensitivity analysis of R0 with respect to the parameters θ, βcc1, βcc2, c1, qc and qa . The dashed
grey lines indicate R0 = 1, and the red asterisks show the changes in the basic reproduction number R0 as
the parameters vary

of the transmission rate between the immature infectious individuals and susceptibles
(i.e., βcc) and the isolation rates (i.e., qc, qa) on the basic reproduction number. We
plotted the variation of R0 as the parameters related toβcc (i.e., θ, βcc1, βcc2 and c1) and
let the isolation rates vary, as shown in Fig. 9. In Fig. 9, the red asterisk points indicate
how the basic reproduction number R0 varies with the discontinuous variation in the
parameters. However, in other figures—for example, Fig. 5—the basic reproduction
number R0 varies continuouslywith respect to time, sowe adopted lines in our plotting.
Fig. 9a shows that R0 would decrease if parameter θ was increased from 0◦ to 90◦ or
from 275◦ to 360◦, whereas R0 would increase if θ was increased from 90 to 275.
Significantly, θ can make the reproduction number R0 higher than 1 when it increases
beyond 185◦. It follows from Fig. 9b that the R0 would increase as βcc1 increases.
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If βcc1 exceeded 0.3, R0 would increase almost linearly, so a small increase in βcc1
could lead to a large increase in R0. When βcc1 > 0.3, R0 > 1. From Fig. 9c, a
decline would occur in R0 if βcc2 was increased, although it would only trigger a
small decrease in R0. Figure9d indicates that even substantial increase in c1 would
only trigger a small increase in R0. According to Fig. 9e and f, if the isolation rates
qc and qa were increased, R0 would decrease. Varying qa would trigger more change
in the basic reproduction number R0 if the same variation occurs for qc as qa . The
main findings indicate that those parameters related to the transmission rate and the
isolation rates have a significant effect on the basic reproduction number R0. Reducing
the social activities as well as enhancing isolation measures could reduce the outbreak
risk of HFMD significantly. In particular, the outbreak can be controlled if qa is large
enough (i.e., if enough mature individuals can be isolated).

It is worth noting that Fig. 8 demonstrates that enhancing the isolation of immature
infectious individuals (qc) would result in a significant decrease in the averagemonthly
number of immature infectious individuals in a cycle, but enhancing the isolation of
mature infectious individuals (qa) would only have a somewhat small effect on the
average monthly number of immature infections. That is reasonable, since we focus
on the immature infections here. However, Fig. 9 indicates that strengthening isolation
of the mature infectious individuals (qa) would lead to a significant decrease in the
outbreak risk, whereas strengthening the isolation of immature infectious individuals
would affect the outbreak risk only marginally. This suggests that a factor that has
a significant impact on outbreak risk does not necessarily have a significant impact
on the cumulative number of infections in a cycle. This may be because the cumu-
lative number of infections in a cycle is affected by other factors besides the basic
reproduction number.

5 Optimal control

In this section, we aim to apply controls in the targeted model to examine potential
outcomes using optimal-control theory. Optimal-control theory formodelswith under-
lying dynamics governed by a systemof ordinary differential equationswas formulated
by Pontryagin and Boltyanskii. According to Pontryagin’s Maximum Principle (Pon-
tryagin et al. 1962), we can investigate the necessary conditions of an optimal control
if the optimal control exists. We then proceed by numerically solving the optimal con-
trol system to obtain the desired optimal control. We consider two different objective
functionals to control and stop the spread of HFMD in the following. In the first sce-
nario, we consider the disease burden as well as the cost required to curb the disease
in the objective functional. For simplicity, we will refer to the optimal-control model
with this objective functional as the disease burden with cost (DBC). In the second, the
objective functional is a combination of new infections and the cost; for simplicity, we
will refer to the optimal-control model with this objective functional as new infections
with cost (NIC).
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5.1 Disease burden with cost (DBC)

In order to demonstrate our idea, we first consider a simple case. Since the immature
population is the main infected population of HFMD in mainland China, we first
investigate optimal-control measures to curb the spread of HFMD in mainland China
by strengthening containments to reduce infection in the immature population. Based
on the results of sensitivity analysis, we initially choose the transmission rates βcc(t)
and βac(t) as control parameters and design the following optimal-control strategy:
reducing the transmission rateβcc(t) andβac(t) by u1(t) and u2(t), respectively,where
1 − u1(t) and 1 − u2(t) measure precautionary efforts such as media reporting, hand
washing and social distancing. The model incorporating these controls is governed by
the following differential equations:

dSc(t)

dt
= � − βcc(t)(1 − u1(t))Sc Ic

Nc
− βac(t)(1 − u2(t))Sc Ia

Nc
− μSc − φSc + ρc Rc,

dEc(t)

dt
= βcc(t)(1 − u1(t))Sc Ic

Nc
+ βac(t)(1 − u2(t))Sc Ia

Nc
− μEc − σcEc,

d Ic(t)

dt
= σcEc − qc Ic − γc1 Ic − μIc − αc1 Ic,

dQc(t)

dt
= qc Ic − γc2Qc − μQc − αc2Qc,

dRc(t)

dt
= γc1 Ic + γc2Qc − μRc − φRc − ρc Rc,

dSa(t)

dt
= φSc − μSa + ρa Ra − βca(t)Sa Ic

Na
− βaa(t)Sa Ia

Na
,

dEa(t)

dt
= βca(t)Sa Ic

Na
+ βaa(t)Sa Ia

Na
− μEa − σa Ea,

d Ia(t)

dt
= σa Ea − qa Ia − γa1 Ia − μIa − αa1 Ia,

dQa(t)

dt
= qa Ia − γa2Qa − μQa − αa2Qa,

dRa(t)

dt
= φRc + γa1 Ia + γa2Qa − μRa − ρa Ra .

(16)

The aim is to find the optimal values u∗
1 and u∗

2 of the controls u1 and u2 such that
the associated trajectories Sc(t), Ec(t), Ic(t), Qc(t), Rc(t), Sa(t), Ea(t), Ia(t), Qa(t)
and Ra(t) solve system (16) in the time interval [0, tend ] with initial conditions
Sc(0), Ec(0), Ic(0), Qc(0), Rc(0), Sa(0), Ea(0), Ia(0), Qa(0) and Ra(0) while min-
imizing the objective functional. The objective functional is defined as the sum of the
cumulative costs associated with the disease Jn1(u1, u2) and the cost of intervention
Jc1(u1, u2); i.e.,

min
ui (t)∈U1

{Jn1(u1, u2) + Jc1(u1, u2)} (17)
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where U1 = {
(u1, u2) ∈ L1[0, tend)]|0 ≤ ui ≤ uimax , i = 1, 2

}
and Jn1(u1, u2) and

Jc1(u1, u2) are functions of control efforts ui (t), i = 1, 2. The control variables are
assumed to be Lebesgue measurable on a finite interval [0, tend ]. The cost related to
the disease depends on the available information and specific disease-containment
measures, which can be expressed as

Jn1(u1, u2) =
∫ tend

0
[A1 Ic(t) + A2 Ia(t)]dt,

where A1 and A2 are positive scaling coefficients used to represent the meanmonetary
value of each day of illness (i.e., loss of productivity and drug treatment) and the value
of lives lost. Jn1(u1, u2) represents the total cost of treatment, loss of productivity
and lives lost of current infecteds per day during spread of HFMD. The total cost of
intervention is a nonlinear function of ui (t),

Jc1(u1, u2) =
∫ tend

0

[
B1u

2
1(t) + B2u

2
2(t)
]
dt,

where B1 and B2 are positive constants accounting for the cost of intervention. We
choose a nonlinear function for the intervention cost to ensure the existence of optimal
control.

Theorem 3 For system (16), there exists adjoint functions λi (i = 1, 2, · · · , 10) and
optimal controls u∗

1 and u∗
2 that minimize the objective functional (17) on U1, where

u∗
1 = min

{
u1max ,max

{
0,

(λ2 − λ1)βcc(t)Sc Ic
2NcB1

}}
,

u∗
2 = min

{
u2max ,max

{
0,

(λ2 − λ1)βac(t)Sc Ia
2NcB2

}}
,

(18)

λ′
i = − ∂H1

∂zi
with the transversality conditions λi (tend) = 0(i = 1, · · · , 10) and

(z1, z2, z3, z4, z5, z6, z7, z8, z9, z10)T = (Sc, Ec, Ic, Qc, Rc, Sa, Ea, Ia, Qa, Ra)
T .

For the detailed derivation of the adjoint functions λi and optimal controls (18), see
Appendix B. For the proof of Theorem 3, see Appendix D.

5.2 New infections with cost (NIC)

In this section, we focus on the optimal-control strategy to contain the transmis-
sion of HFMD in mainland China by decreasing the infections and isolating more
infecteds.We choose the transmission rates βcc(t), βac(t), βca(t), βaa(t) and isolation
rates qc, qa as control parameters and design the following optimal-control strategy:
reducing the above transmission rates by u1(t), u2(t), u3(t) and u4(t), respectively,
and improving the isolation rates qc and qa by u5(t) and u6(t), respectively, where
1 − u1(t), 1 − u2(t), 1 − u3(t) and 1 − u4(t) measure precautionary efforts such as
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media reporting, hand-washing and social distancing, while 1 + u5(t) and 1 + u6(t)
measure viral-load detection. The monetary cost of disease can be estimated as a flat
rate associated to each infected case and derived from the total number of infected
cases (Igoe et al. 2023).

In the second scenario, we do not consider the deaths but only consider the number
of new infections. Hence we adopt a different objective functional that considers the
number of new infecteds instead of current infecteds. Similarly, the control parameters
are functions of time appearing as coefficients in the model. The control efforts ui (t),
i = 1, 2, . . . , 6, are assumed to be subject to constraints 0 ≤ ui (t) ≤ uimax , i =
1, . . . , 6, t ∈ [0, tend ]. The model incorporating the six control variables is given by
the following equations:

dSc(t)

dt
= � − βcc(t)(1 − u1(t))Sc Ic

Nc
− βac(t)(1 − u2(t))Sc Ia

Nc
− μSc − φSc + ρc Rc,

dEc(t)

dt
= βcc(t)(1 − u1(t))Sc Ic

Nc
+ βac(t)(1 − u2(t))Sc Ia

Nc
− μEc − σcEc,

d Ic(t)

dt
= σcEc − qc(1 + u5(t))Ic − γc1 Ic − μIc − αc1 Ic,

dQc(t)

dt
= qc(1 + u5(t))Ic − γc2Qc − μQc − αc2Qc,

dRc(t)

dt
= γc1 Ic + γc2Qc − μRc − φRc − ρc Rc,

dSa(t)

dt
= φSc − μSa + ρa Ra − βca(t)(1 − u3(t))Sa Ic

Na
− βaa(t)(1 − u4(t))Sa Ia

Na
,

dEa(t)

dt
= βca(t)(1 − u3(t))Sa Ic

Na
+ βaa(t)(1 − u4(t))Sa Ia

Na
− μEa − σa Ea,

d Ia(t)

dt
= σa Ea − qa(1 + u6(t))Ia − γa1 Ia − μIa − αa1 Ia,

dQa(t)

dt
= qa(1 + u6(t))Ia − γa2Qa − μQa − αa2Qa,

dRa(t)

dt
= φRc + γa1 Ia + γa2Qa − μRa − ρa Ra .

(19)

We assume that the transmission rates βcc(t), βac(t), βca(t) and βaa(t) are reduced
by u1(t), u2(t), u3(t) and u4(t), respectively, and that the isolation rates qc and qa are
increased by u5(t) and u6(t), respectively. The combined objective functional takes
the form

min
ui (t)∈U2

{Jn2(u1, · · · , u6) + Jc2(u1, · · · , u6)} , (20)

where U2 = {(u1, u2, u3, u4, u5, u6) ∈ L1[0, tend ]|0 ≤ ui ≤ uimax , i = 1, 2, ..., 6}
and
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Jc2(u1(t), · · · , u6(t)) =
∫ tend

0

[
B1u

2
1(t) + B2u

2
2(t)

+B3u
2
3(t) + B4u

2
4(t) + B5u

2
5(t) + B6u

2
6(t)

]
dt,

Jn2(u1(t), · · · , u6(t)) =
∫ tend

0

[
A1

(
βcc(t)(1 − u1(t))Sc Ic

Nc
+ βac(t)(1 − u2(t))Sc Ia

Nc

)

+A2

(
βca(t)(1 − u3(t))Sa Ic

Na
+ βaa(t)(1 − u4(t))Sa Ia

Na

)]
dt .

Here B1, B2, B3, B4, B5, B6, A1 and A2 are positive constants. The specific form
of the optimal control is affected by the relative values of the coefficients A1,
A2, B1, B2, B3, B4, B5 and B6. We similarly get the following conclusion.

Theorem 4 For system (19), there exist adjoint functions λi (i = 1, 2, · · · , 10) and
optimal controls u∗

1, u
∗
2, u

∗
3, u

∗
4, u

∗
5, u

∗
6 that minimize the objective functional (20) on

U2, where the optimal controls u∗
i (i = 1, 2, · · · , 6) are given by

u∗
1 = min

{
u1max ,max

{
0,

(λ2 + A1 − λ1)βcc(t)Sc Ic
2NcB1

}}
,

u∗
2 = min

{
u2max ,max

{
0,

(λ2 + A1 − λ1)βac(t)Sc Ia
2NcB2

}}
,

u∗
3 = min

{
u3max ,max

{
0,

(λ7 + A2 − λ6)βca(t)Sa Ic
2NaB3

}}
,

u∗
4 = min

{
u4max ,max

{
0,

(λ7 + A2 − λ6)βaa(t)Sa Ia
2NaB4

}}
,

u∗
5 = min

{
u5max ,max

{
0,

(λ3 − λ4)qc Ic
2B5

}}
,

u∗
6 = min

{
u6max ,max

{
0,

(λ8 − λ9)qa Ia
2B6

}}
,

(21)

λ′
i = − ∂H2

∂zi
with the transversality conditions λi (tend) = 0(i = 1, · · · , 10) and

(z1, z2, z3, z4, z5, z6, z7, z8, z9, z10)T = (Sc, Ec, Ic, Qc, Rc, Sa, Ea, Ia, Qa, Ra)
T .

For detailed derivation of the optimal control, see Appendix C.

5.3 Simulations of optimal systems

We discuss the numerical solutions of the optimal systems and the corresponding con-
trol measures in the following.We use the approximate algorithm to obtain the optimal
control based on the forward–backward sweep scheme with a first-order Runge–Kutta
scheme that is proposed in Pontryagin (1985), Lenhart and Workman (2007). We use
a convex combination to speed up the convergence, and the specific process is as
follows. Update ui by substituting the new adjoint variables λi , (i = 1, . . . , 10) into
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(18) and (21). They are not stored as the control ui , but as temporary vectors ui . The
control variables ui are set as the convex combination of the values of the last iteration
of ui , namely, oldui , and the temporary vectors ui . That is,

ui = cui + (1 − c)oldui ,

where c ∈ (0, 1). Here, we choose c = 0.5. Once the values of the control variables
ui at the present iteration are sufficiently close to those at the previous iteration, the
iteration is suspended. We initially solve the optimal model under the DBC strategy
using the parameters reported in Tables 1 and 2. We assume the controls u1(t) and
u2(t) in the optimal control model (16) and the objective functional (17) are constant
controls, and we can derive the optimal controls u1 = 0.1320 and u2 = 0.0535,
which minimize the objective functional (17). Hence, in Table 2, we adopt u1 =
0.1320, u2 = 0.0535 in the constant-control case. We tested the advantage of optimal
control as compared to constant control using data on the immature HFMD cases in
2018, as shown in Table 2 and Fig. 10. In Table 2, we adopt CombOC and ConstC to
denote combined optimal control and constant control. In Table 2, diff (I) and diff (II)
refer to the difference between the optimal control and either the no-control case or
constant control, respectively. In Fig. 10, the red, green and blue curves represent the
effects of no control, constant control and optimal control on the transmission rate and
the cumulative number of immature HFMD cases, respectively. Subplots (a) and (b)
illustrate the variation of the transmission rate βcc(t) and the cumulative number of
immature HFMD cases under different controls, respectively. It follows from Table 2
andFig. 10 that the cumulative number of immatureHFMDcases ismuch smaller in the
case of optimal control (9.5023×105 cases) than the case of no control (1.69706×106

cases) or constant control (9.9091 × 105 cases), with a reduction of 44% and 4.11%,
respectively. Optimal control results in a lower total cost than the cost in the case with
constant control (8.28% lower) or no-control case (31% lower) and leads to a lower
number of deaths (37) than the deaths in the case with constant control (38 deaths) or
the case without control (66 deaths), with a reduction of 2.63% and 44%, respectively.
Figure10c–d demonstrate that the optimal controls u1(t) and u2(t) are time varying,
staying at the maximum for approximately 2 months and 4 months, respectively, and
then decreasing. From Table 2 and Fig. 10, we can intuitively see that optimal control
has the best effect, which minimizes total cost, the number of infections and the sum
of deaths.

Note that it is difficult to obtain the estimates of the cost of controls in particular
for nonlinear cost parameters (i.e., the values of B1 and B2), so we fix A1 and A2
and vary the magnitude of B1 and B2 to examine the advantage of optimal control.
Varying the magnitude of the non-linear control parameters led to a similar result:
optimal control has advantages besides minimizing total cost, such as saving lives and
reducing infections (Appendix F, Fig. 14, Table 5).

Next, we use the parameters reported in Tables 1 and 3 to solve the optimal model
under the NIC strategy. Given that there are six controls in the NIC strategy, the
maximum value for each control need not be as large as the corresponding value in
the DBC strategy but can be slightly smaller than the value in the DBC strategy. Thus,
in this scenario, we assume the bounds of the six optimal controls are u1max = 0.06,
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Fig. 10 Optimal control and cumulative number of immature HFMD cases for the DBC strategy compared
to a constant control and the no-control cases, with parameters as in Tables 1 and 2. a Comparison of the
transmission rate β1(t) with the combined optimal control (blue), constant control (green) and no control
(red). bComparison of the cumulative number of immatureHFMDcases in 2018with the combined optimal
control (blue), constant control (green) and no control (red). c–d Optimal controls u1(t) and u2(t)

u2max = 0.017, u3max = 0.002, u4max = 0.02, u5max = 0.02 and u6max = 0.0002.
Performing a similar simulation to the first scenario (DBC), we derive the optimal
controls u1 = 0.0420, u2 = 0.0136, u3 = 0.0012, u4 = 0.0200, u5 = 0.0160
and u6 = 0.00012 that minimize the objective functional (20) in the constant-control
case. We similarly demonstrate the advantages of time-varying control over constant
control by applying the results to the data on the immature HFMD cases in 2018. The
results are shown in Table 3 and Fig. 11, indicating that the cumulative number of
immature HFMD cases, total cost, total deaths and maximum number of infections
were all significantly reduced by using combined optimal control. Similarly, we draw a
conclusion for the change of nonlinear control coefficients: that is, the optimal control
has certain advantages compared to other controls (Appendix F, Fig. 15 and Table 7).

Note that the per-capita daily productivity loss and drug treatment play a key role
in estimating monetary cost of the disease, which will ultimately affect the optimal-
control policy. So in the following analysis, in order to seek optimal-control measures,
we will explore to what extent the value of per-capita daily productivity loss and drug
treatment affect the cumulative number of HFMD cases, deaths and total cost. We
will examine what would happen if the scaling coefficients accounting for the drug
treatment and loss of productivity vary. First, we simulate the optimal model with the
DBC strategy under two alternative assumptions, in which the unit cost A1 is assumed
to be 5 or 1 and A2 is assumed to be 5 or 1 in the appropriate monetary units to measure
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Fig. 11 Result of the NIC strategy compared to constant control and no control, with parameters as in
Tables 1 and 3. a–f Optimal controls u1(t), u2(t), u3(t), u4(t), u5(t) and u6(t). g Comparison of the
cumulative number of immature HFMD cases in 2018 with the combined optimal control (blue), constant
control (green) and no control (red)
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Table 4 Epidemiological values corresponding to Fig. 12 with the percentage differences measured from
A1 = 5, A2 = 5 case

A1 = 5, A2 = 5 A1 = 1, A2 = 1 % difference (%)

Cumulative immature HFMD cases 8.9692 × 105 9.5023 × 105 +5.94

Disease cost Jn1(u1, u2) 2.6543 × 107 5.5579 × 106 −79.06

Intervention cost Jc1(u1, u2) 1.1977 × 106 7.0433 × 105 −41.19

Total cost 2.7741 × 107 6.2622 × 106 −77.43

Total deaths 35 37 +5.71

Time spent at u1max 205 130 −36.59

Time spent at u2max 291 52 −82.13

The other control parameters are in Table 2

average productivity losses. The results are shown in Table 4 and Fig. 12. In Table 4
and Fig. 12, we use the same parameters as in Table 1 and the time horizon used in
Table 2. It follows from Fig. 12 that the optimal control under different unit cost of the
disease (i.e., A1, A2) affect the peak size, although they do not affect the peak time. If
the unit cost of the disease is underestimated, simulations of theDBC strategy illustrate
that the optimal strategy entails 5.94%more cases, 5.71%more lives lost, 77.43% less
total cost and a 36.59% (resp., 82.13%) reduction in the number of days in which the
transmission from the immature infectious individuals (mature infectious individuals)
to immature susceptibles are at themaximum rate.We can derive a similar result for the
NIC strategy, the details of which are presented in Appendix F. That demonstrates that
the optimal-control measure would lead to more infections and more deaths, although
it could result in less total cost if it was based on an underestimated per-capita cost of
the disease. Therefore, a reasonable estimation of the per-capita value of the disease
plays a critical role in determining the optimal-control strategy. It is worth emphasizing
that the cost of control varies with the number of current infecteds or new infecteds,
which demonstrates the importance of controlling the infection.

6 Discussion

To the best of our knowledge, our model is the first to incorporate a 2-year period in
describing the outbreak of hand, foot and mouth disease in mainland China. We deter-
mined a threshold parameter r(
F−V (ω)) = 1 that delineates extinction fromuniform
persistence in the formof a globally stable periodic orbit when r(
F−V (ω)) > 1 (The-
orem 2). By validating the model with data on the monthly number of HFMD cases
among children under 7 in mainland China (Fig. 4), we estimated the basic reproduc-
tion number as 0.9599, which indicates that HFMD is unlikely to be eliminated if
stochastic effects play a part. We also fitted the data with a periodic model of 1-year
period (Fig. 13). By comparing the AIC values, we determined that a 2-year cycle
was appropriate. We also analyzed the effective reproduction number over time and
found that it fluctuated around 1 (Fig. 5).
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Fig. 12 Optimal control, incidence and cumulative number of immature HFMD cases in 2018 for the DBC
strategy for different A1, A2 values corresponding to the results in Table 4

A sensitivity analysis implies that transmission between the immature/mature indi-
viduals (i.e., those under/above 7) is a critical factor. We also found that the epidemic
could be controlled if sufficiently many mature infected individuals could be isolated
(Figs. 6, 7, 8 and 9). We also applied two optimal-control schemes (DBC and NIC) to
minimise the disease burden, new cases and overall costs of disease management, and
the existence of optimal control was theoretically determined (Theorems 3 and 4). We
showed that optimal control can have a substantial effect on lowering the cumulative
cases compared to either no control or constant control (Table 2 and Fig. 10 for the
DBC strategy; Table 3 and Fig. 11 for the NIC strategy ). We also found that under-
estimating the per-capita cost of the disease would lead to more infections and more
deaths, although it could result in less total cost (Fig. 12 and Table 4 for the DBC strat-
egy; Fig. 16 and Table 9 for the NIC strategy. It follows that a reasonable estimation of
the per-capita value of the disease is vital in determining the optimal-control strategy.

Our model has several limitations, which should be acknowledged. We used a
double sinusoidal period, but the data is not perfectly sinusoidal. We only divided our
population into two age groups: immature individuals under the age of 7 and mature
individuals over the age of 7, whereas more subdivisions would yield more insights. A
finer classification of the population would make the targeted model more realistic and
reliable. For example, we could determine which age group has the most significant
impact on the transmission of HFMD, and which age group of infected individuals can
be isolated for better control in medical-resource constraints. However, the division of
more stages would make the model higher-dimensional, resulting in more difficulties
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in the fitting. We assumed a constant birth rate and a linear death rate, which are
standard approximations in the field, but may not be the best formulations for large
populations such as those found in mainland China. We have adopted six controls in
the second optimal controls (i.e., the NIC strategy), but using fewer controls would be
better. Future work could involve seeking the optimal strategy using fewer controls.

With such a low reproduction number, we stand a very real chance of eradicating
hand and foot andmouth disease frommainlandChina. However, this will only happen
if sufficient disease-control measures are undertaken. This requires mobilization of
both individuals and governments, working in tandem to not only lower R0 below the
eradication threshold but keep it there.

Appendix A: Proof of Theorem 2

Proof We initially prove system (9) is uniformly persistent; i.e., there exists a constant
ε > 0 such that the solution of system (9) with the arbitrary initial value

(
S0c , E

0
c , I

0
c , Q0

c, R
0
c , S

0
a , E

0
a , I

0
a , Q0

a, R
0
a

)
∈ R

6+ × I nt
(
R
4+
)

satisfies

lim inf
t→∞ (Sc(t), Ec(t), Ic(t), Qc(t), Rc(t), Sa(t), Ea(t), Ia(t), Qa(t), Ra(t))

≥ (ε, ε, ε, ε, ε, ε, ε, ε, ε, ε).

Define P as the Poincaré map from R
10+ → R

10+ with P(x0) = u(ω, x0) for any
x0 ∈ R

10+ , where u(t, x0) is the unique solution of system (9) satisfying u(0, x0) = x0.
At first, we prove P is uniformly persistent with regard to (X0, ∂X0). It follows from
Lemmas 1 and 2 that X and X0 are positively invariant and that ∂X0 is a closed set
in X . By Lemma 3, we know the solution of system (9) is uniformly and ultimately
bounded, so P is point dissipative on R

10+ . We further know that P is compact from
R
10+ to R

10+ . Therefore, P has a global attractor by Theorem 3.4.8 in Hale (2010).
Define

M∂ ≡
{
(S0c , E

0
c , I

0
c , Q0

c, R
0
c , S

0
a , E

0
a , I

0
a , Q0

a, R
0
a) ∈ ∂X0

: Pm(S0c , E
0
c , I

0
c , Q0

c, R
0
c , S

0
a , E

0
a , I

0
a , Q0

a, R
0
a) ∈ ∂X0,m ≥ 0

}
.

Then we claim that

M∂ = {
(Sc, 0, 0, Qc, Rc, Sa, 0, 0, Qa, Ra) ∈ X : Sc ≥ 0,

Qc ≥ 0, Rc ≥ 0, Sa ≥ 0, Qa ≥ 0, Ra ≥ 0
}
.

It is clear that

{
(Sc, 0, 0, Qc, Rc, Sa, 0, 0, Qa, Ra) ∈ X :
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Sc ≥ 0, Qc ≥ 0, Rc ≥ 0, Sa ≥ 0, Qa ≥ 0, Ra ≥ 0
} ⊆ M∂ .

And we just need to prove

M∂ ⊆ {(Sc, 0, 0, Qc, Rc, Sa, 0, 0, Qa, Ra) ∈ X :
Sc ≥ 0, Qc ≥ 0, Rc ≥ 0, Sa ≥ 0, Qa ≥ 0, Ra ≥ 0

}
.

For any

x0 =
(
S0c , E

0
c , I

0
c , Q0

c, R
0
c , S

0
a , E

0
a , I

0
a , Q0

a, R
0
a

)

∈ ∂X0\
{
(Sc, 0, 0, Qc, Rc, Sa, 0, 0, Qa, Ra) ∈ X :

Sc ≥ 0, Qc ≥ 0, Rc ≥ 0, Sa ≥ 0, Qa ≥ 0, Ra ≥ 0
}
,

suppose any one of {E0
c , I

0
c , E0

a , I
0
a } is not zero. Without loss of generality, let E0

c =
0, I 0c = 0, E0

a > 0, I 0a = 0. Then we obtain the following

Ec(t) = e−(σc+μ)t
∫ t

0

(βcc(u)Sc Ic
Nc

+ βac(u)Sc Ia
Nc

)
e(σc+μ)udu > 0,

Ic(t) = e−(qc+γc1+αc1+μ)t
∫ t

0
σcEce

(qc+γc1+αc1+μ)udu > 0,

Ea(t) = e−(σa+μ)t
[
E0
a +

∫ t

0

(βca(u)Sa Ic
Na

+ βaa(u)Sa Ia
Na

)
e(σa+μ)udu

]
> 0,

Ia(t) = e−(qa+γa1+αa1+μ)t
∫ t

0
σa Eae

(qa+γa1+αa1+μ)udu > 0

for any t > 0. Thus, we have

(
Sc(t), Ec(t), Ic(t), Qc(t), Rc(t), Sa(t), Ea(t), Ia(t), Qa(t), Ra(t)

)
/∈ ∂X0,

so

M∂ ⊆
{
(Sc, 0, 0, Qc, Rc, Sa, 0, 0, Qa, Ra) :

Sc ≥ 0, Qc ≥ 0, Rc ≥ 0, Sa ≥ 0, Qa ≥ 0, Ra ≥ 0
}
.

Therefore,

M∂ =
{
(Sc, 0, 0, Qc, Rc, Sa, 0, 0, Qa, Ra) :
Sc ≥ 0, Qc ≥ 0, Rc ≥ 0, Sa ≥ 0, Qa ≥ 0, Ra ≥ 0

}
.
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It is clear that E0 = ( �
φ+μ

, 0, 0, 0, 0, �φ
μ(φ+μ)

, 0, 0, 0, 0
)
is a fixed point of the map

P in M∂ . Assume that

u(t, x0) ≡ (Sc(t), Ec(t), Ic(t), Qc(t), Rc(t), Sa(t), Ea(t), Ia(t), Qa(t), Ra(t)
)

is a solution of the system (9) satisfying u(0, x0) = x0 ∈ M∂ , so we have

dQc

dt
< 0,

dRc

dt
< 0,

dQa

dt
< 0,

dRa

dt
< 0

due to Ec = 0, Ic = 0, Ea = 0, Ia = 0. Thus we have

lim
t→∞ Qc(t) = 0, lim

t→∞ Rc(t) = 0, lim
t→∞ Qa(t) = 0, lim

t→∞ Ra(t) = 0,

so it follows that,

lim
t→∞ Sc(t) = �

μ + φ
, lim
t→∞ Sa(t) = �φ

μ(μ + φ)
.

We further have

lim
t→∞

(
Sc(t), Ec(t), Ic(t), Qc(t), Rc(t), Sa(t), Ea(t), Ia(t), Qa(t), Ra(t)

) = E0,

so E0 is isolated and {E0} is a cover without a cycle.
Next, we demonstrate Ws(E0) ∩ X0 = ∅. For any x0 ∈ X0, by the continuity of

solutions with respect to initial conditions, for any ε > 0, there exists δ0 > 0 such

that when
∣∣∣x0 − E0

∣∣∣ ≤ δ0, we have

∥∥∥u(t, x0) − u(t, E0)

∥∥∥ ≤ ε

for all t ∈ [0, ω]. We claim that

lim sup
m→∞

d
(
Pm(x0), E0

) ≥ δ0.

If not, then there exists x0 ∈ X0 such that

lim sup
m→∞

d
(
Pm(x0), E0

)
< δ0. (22)

Without loss of generality, we can assume that d
(
Pm(x0), E0

)
< δ0 holds for all

m > 0, so

∥∥∥u(t, Pm(x0)) − u(t, E0)

∥∥∥ ≤ ε for all t ∈ [0, ω].
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For any t ≥ 0, let t = mω + t2, where t2 ∈ [0, ω) and m = [ t
ω

]
is the greatest integer

no larger than t
ω
. Thus

∥∥∥u(t, x0) − u(t, E0)

∥∥∥ =
∥∥∥u(t2, P

m(x0)) − u(t2, E0)

∥∥∥ ≤ ε

holds for all t ≥ 0. Then we have

�

φ + μ
− ε ≤ Sc(t) ≤ �

φ + μ
+ ε, 0 ≤ Ec(t) ≤ ε, 0 ≤ Ic(t) ≤ ε, 0 ≤ Qc(t) ≤ ε, 0 ≤ Rc(t) ≤ ε,

�φ

μ(φ + μ)
− ε ≤ Sa (t) ≤ �φ

μ(φ + μ)
+ ε, 0 ≤ Ea (t) ≤ ε,

0 ≤ Ia (t) ≤ ε, 0 ≤ Qa (t) ≤ ε, 0 ≤ Ra (t) ≤ ε,

for all t ≥ 0. Thus we get

Sc(t)

Nc(t)
≥

�
φ+μ

− ε

�
φ+μ

+ 5ε
>

�
φ+μ

− ε − 5ε
�

φ+μ
+ 5ε − 5ε

=
�

φ+μ
− 6ε

�
φ+μ

= 1 − 6ε
�

φ+μ

≡ 1 − η1,

Sa(t)

Na(t)
≥

�φ
μ(φ+μ)

− ε

�φ
μ(φ+μ)

+ 5ε
>

�φ
μ(φ+μ)

− ε − 5ε
�φ

μ(φ+μ)
+ 5ε − 5ε

=
�φ

μ(φ+μ)
− 6ε

�φ
μ(φ+μ)

= 1 − 6ε
�φ

μ(φ+μ)

≡ 1 − μ

φ
η1,

where η1 = 6ε
�

φ+μ

. Consider the auxiliary system

dv1

dt
= βcc(t)(1 − η1)v2 + βac(t)(1 − η1)v4 − (μ + σc)v1,

dv2

dt
= σcv1 − (qc + γc1 + μ + αc1)v2,

dv3

dt
= βca(t)

(
1 − η1

μ

φ

)
v2 + βaa(t)

(
1 − η1

d

φ

)
v4 − (μ + σa)v3,

dv4

dt
= σav3 − (qa + γa1 + μ + αa1)v4.

Denote

D(t) =

⎡
⎢⎢⎣

−(σc + μ) βcc(t)(1 − η1) 0 βac(t)(1 − η1)

σc −(qc + γc1 + μ + αc1) 0 0
0 βca(t)

(
1 − η1

μ
φ

) −(σa + μ) βaa(t)
(
1 − η1

μ
φ

)
0 0 σa −(qa + γa1 + μ + αa1)

⎤
⎥⎥⎦ .
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It is easy to see that D(t) is continuous, cooperative and irreducible. Let

F1 =

⎡
⎢⎢⎣

0 βcc(t)(1 − η1) 0 βac(t)(1 − η1)

0 0 0 0
0 βca(t)(1 − η1

μ
φ
) 0 βaa(t)(1 − η1

μ
φ
)

0 0 0 0

⎤
⎥⎥⎦ ,

V1 =

⎡
⎢⎢⎣

σc + μ 0 0 0
−σc qc + γc1 + μ + αc1 0 0
0 0 σa + μ 0
0 0 −σa qa + γa1 + μ + αa1

⎤
⎥⎥⎦ ,

Then we have

F1 − V1 = F − V − η1

⎡
⎢⎢⎣

0 βcc(t) 0 βac(t)
0 0 0 0
0 βca(t)

μ
φ

0 βaa(t)
μ
φ

0 0 0 0

⎤
⎥⎥⎦ ≡ F − V − η1B(t).

By Lemma 5, we have r
(

F−V (ω)

)
> 1 if R0 > 1. Thus when ε is sufficiently small,

η1 is small enough such that r
(

F−V−η1B(ω)

)
> 1. Hence, it follows from Lemma 3

and the comparison theorem that there exists a positive ω periodic function v(t) such
that J (t) ≥ v(t)eθ2t with

J (t) = (Ec(t), Ic(t), Ea(t), Ia(t)
)T

, θ2 = 1

ω
ln
(

F−V−η1B(t)

)
.

Since θ2 > 0, we have

lim
t→∞ Ec(t) = ∞, lim

t→∞ Ic(t) = ∞, lim
t→∞ Ea(t) = ∞, lim

t→∞ Ia(t) = ∞,

which contadicts (22). Thus Ws(E0) ∩ X0 = ∅. So P is uniformly persistent, and
further the solution of (9) is uniformly persistent. Thus, according to Theorem 1.3.6
in Zhao (2003), P has a fixed point

x∗
0 ≡ (S∗

c (0), E
∗
c (0), I

∗
c (0), Q∗

c(0), R
∗
c (0), S

∗
a (0), E

∗
a (0), I

∗
a (0), Q∗

a(0), R
∗
a(0)

) ∈ X0,

so

S∗
c (0) ∈ R+,

(
E∗
c (0), I

∗
c (0)

) ∈ I nt(R2+),
(
Q∗

c(0), R
∗
c (0)) ∈ R

2+,

S∗
a (0) ∈ R+,

(
E∗
a (0), I

∗
a (0)

) ∈ I nt(R2+),
(
Q∗

a(0), R
∗
a(0)

) ∈ R
2+.

Suppose

S∗
c (0) > 0, Q∗

c(0) > 0, R∗
c (0) > 0, S∗

a (0) > 0, Q∗
a(0) > 0, R∗

a(0) > 0.
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If not, we can let S∗
c (0) = 0, and it follows from the first equation of system (9) that

dS∗
c (t)

dt
≥ � − βcc(t)

S∗
c (t)

Nc
Ic − βac(t)

S∗
c (t)

Nc
Ia − (d + φ)S∗

c (t)

and

S∗
c (0) = S∗

c (nω) = 0, n = 1, 2, 3, . . .

Then we get

S∗
c (t) ≥

[
S∗
c (0) +

∫ t

0
�e

∫ s2
0 (μ+φ+λc(s1))ds1ds2

]
e
∫ t
0 −(μ+φ+λc(s1))ds1

= e
∫ t
0 −(μ+φ+λc(s1))ds1

∫ t

0
�e

∫ s2
0 (μ+φ+λc(s1))ds1ds2,

so S∗
c (nω) > 0, which contradicts S∗

c (nω) = 0. It follows that S∗
c (0) > 0. Similarly,

we can prove

Q∗
c(0) > 0, R∗

c (0) > 0, S∗
a (0) > 0, Q∗

a(0) > 0, R∗
a(0) > 0.

Therefore,

S∗
c (0) > 0, Q∗

c(0) > 0, R∗
c (0) > 0, S∗

a (0) > 0, Q∗
a(0) > 0, R∗

a(0) > 0

is a positive periodic solution with period ω. ��

Appendix B: Optimal control of model (16)

The optimal control for the objective functional (17) can be found by Pontryagin’s
MaximumPrinciple (Pontryagin et al. 1962). In order to find the solution of the optimal
system (16), we define the Hamiltonian function for the system as

H1 = A1 Ic + A2 Ia + B1u
2
1(t) + B2u

2
2(t) + λ1

dSc
dt

+ λ2
dEc

dt

+ λ3
d Ic
dt

+ λ4
dQc

dt
+ λ5

dRc

dt

+ λ6
dSa
dt

+ λ7
dEa

dt
+ λ8

d Ia
dt

+ λ9
dQa

dt
+ λ10

dRa

dt

with the following adjoints and transversality conditions:
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λ′
1 = −

[
λ6φ + (λ2 − λ1)

(
βcc(t)(1 − u1(t))Ic(Nc − Sc)

N2
c

+ βac(t)(1 − u2(t))Ia(Nc − Sc)

N2
c

)
− λ1(μ + φ)

]

λ′
2 = −

[
(λ1 − λ2)

(
βcc(t)(1 − u1(t))Sc Ic

N2
c

+ βac(t)(1 − u2(t))Sc Ia

N2
c

)

− λ2(σc + μ) + λ3σc

]

λ′
3 = −

[
A1 + (λ2 − λ1)

(
βcc(t)(1 − u1(t))Sc(Nc − Ic)

N2
c

− βac(t)(1 − u2(t))Sc Ia

N2
c

)

− λ3
(
qc + μ + αc1 + γc1

)+ λ4qc + λ5γc1 + (λ7 − λ6)
βca(t)Sa

Na

]

λ′
4 = −

[
(λ1 − λ2)

(
βcc(t)(1 − u1(t))Sc Ic

N2
c

+ βac(t)(1 − u2(t))Sc Ia

N2
c

)

− λ4
(
μ + αc2 + γc2

)+ λ5γc2

]

λ′
5 = −

[
(λ1 − λ2)

(
βcc(t)(1 − u1(t))Sc Ic

N2
c

+ βac(t)(1 − u2(t))Sc Ia

N2
c

)

+ λ1ρc − λ5(μ + φ + ρc) + λ10φ

]

λ′
6 = −

[
(λ7 − λ6)

(
βca(t)Ic(Na − Sa)

N2
a

+ βaa(t)Ia(Na − Sa)

N2
a

)
− λ6μ

]

λ′
7 = −

[
(λ6 − λ7)

(
βca(t)Sa Ic

N2
a

+ βaa(t)Sa Ia

N2
a

)
− λ7(σa + μ) + λ8σa

]

λ′
8 = −

[
A2 + (λ2 − λ1)

βac(t)(1 − u2(t))Sc
Nc

+ (λ6 − λ7)

(
βca(t)Sa Ic

N2
a

− βaa(t)Sa(Na − Ia)

N2
a

)

− λ8
(
qa + μ + αa1 + γa1

)+ λ9qa + λ10γa1

]

λ′
9 = −

[
(λ6 − λ7)

(
βca(t)Sa Ic

N2
a

+ βaa(t)Sa Ia

N2
a

)
− λ9

(
μ + αa2 + γa2

)+ λ10γa2

]

λ′
10 = −

[
(λ6 − λ7)

(
βca(t)Sa Ic

N2
a

+ βaa(t)Sa Ia

N2
a

)
+ λ6ρa − λ10(μ + ρa)

]

λi (tend ) = 0, i = 1, . . . , 10.

On the interior of the control set, we can then characterize the optimal control by the
optimality condition

∂H1

∂u1

∣∣∣∣
u1=u∗

1

= 2B1u1 + λ1
βcc(t)Sc Ic

Nc
− λ2

βcc(t)Sc Ic
Nc

= 0,

∂H1

∂u2

∣∣∣∣
u2=u∗

2

= 2B2u2 + λ1
βac(t)Sc Ia

Nc
− λ2

βac(t)Sc Ia
Nc

= 0.
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Then we have

u∗
1 = min

{
u1max ,max

{
0,

(λ2 − λ1)βcc(t)Sc Ic
2NcB1

}}
,

u∗
2 = min

{
u2max ,max

{
0,

(λ2 − λ1)βac(t)Sc Ia
2NcB2

}}
.

Appendix C: Optimal control of model (19)

The Hamiltonian function for model (19) is defined as:

H2 = A1

(
βcc(t)(1 − u1(t))Sc Ic

Nc
+ βac(t)(1 − u2(t))Sc Ia

Nc

)

+ A2

(
βca(t)(1 − u3(t))Sa Ic

Na
+ βaa(t)(1 − u4(t))Sa Ia

Na

)

+ B1u
2
1(t) + B2u

2
2(t) + B3u

2
3(t) + B4u

2
4(t) + B5u

2
5(t) + B6u

2
6(t)

+ λ1
dSc
dt

+ λ2
dEc
dt

+ λ3
d Ic
dt

+ λ4
dQc

dt

+ λ5
dRc
dt

+ +λ6
dSa
dt

+ λ7
dEa
dt

+ λ8
d Ia
dt

+ λ9
dQa

dt
+ λ10

dRa
dt

,

where the adjoint variables satisfy the equations

λ′
1 = −

[
(λ2 + A1 − λ1)

(
βcc(t)(1 − u1(t))Ic(Nc − Sc)

N2
c

+ βac(t)(1 − u2(t))Ia(Nc − Sc)

N2
c

)
+ λ6φ − λ1(μ + φ)

]

λ′
2 = −

[
(λ1 − λ2 − A1)

(
βcc(t)(1 − u1(t))Sc Ic

N2
c

+ βac(t)(1 − u2(t))Sc Ia

N2
c

)

− λ2(σc + μ) + λ3σc

]

λ′
3 = −

[
(λ2 + A1 − λ1)

(
βcc(t)(1 − u1(t))Sc(Nc − Ic)

N2
c

− βac(t)(1 − u2(t))Sc Ia

N2
c

)

− λ3
(
qc(1 + u5(t)) + μ + αc1 + γc1

)+ λ4qc(1 + u5(t)) + λ5γc1

+ (λ7 + A2 − λ6)
βca(t)(1 − u3(t))Sa

Na

]

λ′
4 = −

[
(λ1 − λ2 − A1)

(
βcc(t)(1 − u1(t))Sc Ic

N2
c

+ βac(t)(1 − u2(t))Sc Ia

N2
c

)

− λ4
(
μ + αc2 + γc2

)+ λ5γc2

]
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λ′
5 = −

[
(λ1 − λ2 − A1)

(
βcc(t)(1 − u1(t))Sc Ic

N2
c

+ βac(t)(1 − u2(t))Sc Ia

N2
c

)

+ λ1ρc − λ5(μ + φ + ρc) + λ10φ

]

λ′
6 = −

[
(λ7 − λ6 + A2)

(
βca(t)(1 − u3(t))Ic(Na − Sa)

N2
a

+ βaa(t)(1 − u4(t))Ia(Na − Sa)

N2
a

)
− λ6μ

]

λ′
7 = −

[
(λ6 − λ7 − A2)

(
βca(t)(1 − u3(t))Sa Ic

N2
a

+ βaa(t)(1 − u4(t))Sa Ia

N2
a

)

− λ7(σa + μ) + λ8σa

]

λ′
8 = −

[
(λ2 + A1 − λ1)

βac(t)(1 − u2(t))Sc
Nc

− λ8
(
qa(1 + u6(t)) + μ + αa1 + γa1

)+ λ9qa(1 + u6(t))

+ λ10γa1 + (λ6 − λ7 − A2)

(
βca(t)(1 − u3(t))Sa Ic

N2
a

− βaa(t)(1 − u4(t))Sa(Na − Ia)

N2
a

)]

λ′
9 = −

[
(λ6 − λ7 − A2)

(
βca(t)(1 − u3(t))Sa Ic

N 2
a

+ βaa(t)(1 − u4(t))Sa Ia
N 2
a

)

− λ9
(
μ + αa2 + γa2

)+ λ10γa2

]

λ′
10 = −

[
(λ6 − λ7 − A2)

(
βca(t)(1 − u3(t))Sa Ic

N 2
a

+ βaa(t)(1 − u4(t))Sa Ia
N 2
a

)

+ λ6ρa − λ10(μ + ρa)

]

and the transversality conditions λi (tend) = 0, i = 1, . . . , 10.
On the interior of the control set, we can then characterize the optimal control by

the optimality condition

∂H2

∂u1

∣∣∣∣
u1=u∗

1

= 2B1u
∗
1 + λ1

βcc(t)Sc Ic
Nc

− λ2
βcc(t)Sc Ic

Nc
− A1

βcc(t)Sc Ic
Nc

= 0

∂H2

∂u2

∣∣∣∣
u2=u∗

2

= 2B2u
∗
2 + λ1

βac(t)Sc Ia
Nc

− λ2
βac(t)Sc Ia

Nc
− A1

βac(t)Sc Ia
Nc

= 0,

∂H2

∂u3

∣∣∣∣
u3=u∗

3

= 2B3u
∗
3 + λ6

βca(t)Sa Ic
Na

− λ7
βca(t)Sa Ic

Na
− A2

βca(t)Sa Ic
Na

= 0,
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∂H2

∂u4

∣∣∣∣
u4=u∗

4

= 2B4u
∗
4 + λ6

βaa(t)Sa Ia
Na

− λ7
βaa(t)Sa Ia

Na
− A2

βaa(t)Sa Ia
Na

= 0,

∂H2

∂u5

∣∣∣∣
u5=u∗

5

= 2B5u
∗
5 − λ3qc Ic + λ4qc Ic = 0,

∂H2

∂u6

∣∣∣∣
u6=u∗

6

= 2B6u
∗
6 − λ8qa Ia + λ9qa Ia = 0.

Then we have

u∗
1 = min

{
u1max ,max

{
0,

(λ2 + A1 − λ1)βcc(t)Sc Ic
2NcB1

}}
,

u∗
2 = min

{
u2max ,max

{
0,

(λ2 + A1 − λ1)βac(t)Sc Ia
2NcB2

}}
,

u∗
3 = min

{
u3max ,max

{
0,

(λ7 + A2 − λ6)βca(t)Sa Ic
2NaB3

}}
,

u∗
4 = min

{
u4max ,max

{
0,

(λ7 + A2 − λ6)βaa(t)Sa Ia
2NaB4

}}
,

u∗
5 = min

{
u5max ,max

{
0,

(λ3 − λ4)qc Ic
2B5

}}
,

u∗
6 = min

{
u6max ,max

{
0,

(λ8 − λ9)qa Ia
2B6

}}
.

Appendix D: Proof of Theorem 3

Proof Note that the integrand of the objective functional Jc1(u1, u2) + Jn1(u1, u2)
is convex on the convex control set U1, so the existence of an optimal solution
(S∗

c , E
∗
c , I

∗
c , Q∗

c , R
∗
c , S

∗
a , E

∗
a , I

∗
a , Q∗

a, R
∗
a )with anoptimal control (u∗

1, u
∗
2) comes from

the linearity of the model (16) in the control variables ui and boundedness by a linear
system in the state variables (Fleming and Rishel 2012). ��

Appendix E: Fitting with 1-period compared with 2-period

We choose the 1-year-period transmission rates between different populations as fol-
lows:

βcc(t) = βcc1 − βcc2 sin
2π(t + θ)

365
,

βac(t) = βac1 − βac2 sin
2π(t + θ)

365
,

βca(t) = βca1 − βca2 sin
2π(t + θ)

365
,
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Fig. 13 Fitting result for the data on the monthly number of new HFMD cases in immature individuals in
mainland China from January 2011 to December 2018

βaa(t) = βaa1 − βaa2 sin
2π(t + θ)

365
.

Fittingmodel (9) toHFMDdata is shown inFig. 13. InFig. 13, thin blue boxes represent
the monthly number of new HFMD cases in mainland China from January 2011 to
December 2018, and the best-fitting curve is represented by the dark blue solid curve.

Appendix F: Advantage of optimal controls in different cases

We initially examine the advantage of optimal control in the DBC strategy. In the
following, we fix A1 = A2 = 1, take the baseline value B1 = 150000, B2 = 130000
and consider the following four scenarios:

Case (a1) Bj ( j = 1, 2) reducing to 1/10 of the baseline values;
Case (a2) Bj ( j = 1, 2) expanding to 10 times the baseline values;
Case (a3) Bj ( j = 1, 2) expanding to 100 times the baseline values;
Case (a4) Bj ( j = 1, 2) expanding to 1000 times the baseline values.

The details are shown in Fig. 14 and Tables 5 and 6.
In Fig. 14, the red, green and blue curves represent the effects of no control, constant

control and optimal control on the cumulative number of immature HFMD cases.
Subplots (a)–(d) illustrate the advantage of the optimal control compared with the
constant control and no-control case with the intervention cost coefficients B1 and
B2 in Cases (a1)–(a4), respectively. In Tables 5 and 6, the baseline value represents
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Fig. 14 The advantage of the optimal-control model (16) with the combined objective functional (17)
on the cumulative number of immature infected cases in mainland China with different intervention cost
coefficients B1 and B2 in Cases (a1)–(a4)

Table 5 Difference between the optimal control and the constant control and no-control case on the cumu-
lative number of immature infected cases with different intervention cost coefficients in Cases (a1)–(a4)

No control ConstC CombOC diff(I) (%) diff(II) (%)

Baseline value 1.69706 × 106 9.9091 × 105 9.5023 × 105 −44.01 −4.11

Case (a1) 1.69706 × 106 8.9084 × 105 8.9381 × 105 −47.33 +0.33

Case (a2) 1.69706 × 106 1.5158 × 106 1.3769 × 106 −18.87 −9.16

Case (a3) 1.69706 × 106 1.6788 × 106 1.6484 × 106 −2.87 −1.81

Case (a4) 1.69706 × 106 1.6983 × 106 1.6915 × 106 −0.33 −0.40

Table 6 Difference between the optimal control and the constant control and no-control case on the total
cost with different intervention cost coefficients in Cases (a1)–(a4)

No control ConstC CombOC diff(I) (%) diff(II) (%)

Baseline value 9.072 × 106 6.8275 × 106 6.2622 × 106 −30.97 −8.28

Case (a1) 9.072 × 106 5.4416 × 106 5.4240 × 106 −40.21 −0.32

Case (a2) 9.072 × 106 8.5993 × 106 8.1968 × 106 −9.65 −4.68

Case (a3) 9.072 × 106 9.0170 × 106 8.9443 × 106 −1.41 −0.81

Case (a4) 9.072 × 106 9.0749 × 106 9.0480 × 106 −0.26 −0.30
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Fig. 15 The advantage of the optimal-control model (19) with the combined objective functional (20)
on the cumulative number of immature infected cases in mainland China with different intervention cost
coefficients in Cases (b1)–(b4)

Table 7 Difference between the optimal control and the constant-control and the no-control cases on the
cumulative number of immature infected cases with different intervention cost coefficients in Cases (b1)–
(b4)

No control ConstC CombOC diff(I) (%) diff(II) (%)

Baseline values 1.69706 × 106 1.1528 × 106 1.0957 × 106 −35.44 −4.95

Case (b1) 1.69706 × 106 1.0666 × 106 1.0682 × 106 −37.15 +0.15

Case (b2) 1.69706 × 106 1.4012 × 106 1.3581 × 106 −37.06 −3.08

Case (b3) 1.69706 × 106 1.6333 × 106 1.6317 × 106 −19.97 −0.10

Case (b4) 1.69706 × 106 1.6373 × 106 1.6898 × 106 −3.85 +3.21

the corresponding values in Table 2. According to Fig. 14 and Tables 5 and 6, we
find that variation in the intervention cost coefficients B1, B2 leads to differences
in the advantages of optimal control over constant control and the no-control case.
The optimal control, compared with the no-control case, can achieve the minimum
number of infections in mainland China as well as the minimum cost. Compared with
the constant-control case, optimal control can also minimise both infections and costs
in Cases (a2)–(a4); in Case (a1), the cumulative number of infections and total cost
under optimal control are very close to that under constant control.
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Table 8 Difference between the optimal control and the constant-control and no-control cases on the total
cost with different intervention cost coefficients in Cases (b1)–(b4)

No control ConstC CombOC diff(I) (%) diff(II) (%)

Baseline values 1.8466 × 106 1.3960 × 106 1.3117 × 106 −28.97 −6.04

Case (b1) 1.8466 × 106 1.1997 × 106 1.1949 × 106 −35.29 −0.40

Case (b2) 1.8466 × 106 1.6685 × 106 1.5968 × 106 −13.53 −4.30

Case (b3) 1.8466 × 106 1.9796 × 106 1.8064 × 106 −2.18 −8.75

Case (b4) 1.8466 × 106 3.3372 × 106 1.8385 × 106 −0.44 −44.91

Table 9 Epidemiological values corresponding to Fig. 16 with the percentage differences measured from
the A1 = 5 and A2 = 5 case

A1 = 5, A2 = 5 A1 = 1, A2 = 1 %difference (%)

Cumulative immature HFMD cases 1.0702 × 106 1.0957 × 106 +2.38

Disease cost Jn1(u1, u2) 5.8999 × 106 1.2064 × 106 −79.55

Intervention cost Jc1(u1, u2) 1.5582 × 105 1.0527 × 105 −32.44

Total cost 6.0557 × 106 1.3117 × 106 −78.34

Total deaths 42 43 +2.38

Time spent at u1max 194 111 −42.78

Time spent at u2max 339 111 −67.26

Time spent at u3max 308 19 −93.83

Time spent at u4max 351 305 −13.11

Time spent at u5max 208 129 −37.98

Time spent at u6max 257 133 −48.25

The other control parameters are in Table 3

Next, we examine the advantage of optimal control in theNIC strategy.We fix A1 =
A2 = 1, take the baseline values B1 = 150000, B2 = 130000, B3 = 100000, B4 =
100000, B5 = 150000, B6 = 100000 and consider the following four scenarios:

Case (b1) Bj ( j = 1, . . . , 6) reducing to 1/10 of the baseline values;
Case (b2) Bj ( j = 1, . . . , 6) expanding to 10 times the baseline values;
Case (b3) Bj ( j = 1, . . . , 6) expanding to 100 times the baseline values;
Case (b4) Bj ( j = 1, . . . , 6) expanding to 1000 times the baseline values.

The effect of the optimal control with different intervention cost coefficients in con-
trolling the cumulative number of immature infections is shown in Fig. 15 and Tables
7 and 8.
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Fig. 16 Optimal control, incidence and cumulative number of immature HFMD cases in 2018 for the
optimal model (19) with the combined objective functional (20) for different A1, A2 values, corresponding
to the results in Table 9
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In Fig. 15, the red, green and blue curves represent the effects of no control, constant
control and optimal control on the cumulative number of immature HFMD cases
in 2018. In Tables 7 and 8, the baseline value represents the corresponding values
in Table 3. According to Fig. 15 and Tables 7 and 8, we also find that the optimal
control, compared with the no-control case, can achieve the minimum number of
infections inmainlandChina aswell as theminimumcost.Comparedwith the constant-
control case, optimal control can also achieve the minimum infections and total cost
in Cases (b2)–(b3); in Cases (b1), the cumulative number of infections and total cost
under optimal control are very close to that under constant control; in Case (b4), the
cumulative number of infections under optimal control is slightly larger than that under
constant control, but the total cost under optimal control is significantly lower than that
under constant control. The results demonstrate that optimal control, compared with
the constant-control or no-control cases, is still the most advantageous by reducing
infections and cost.

In the following, we will investigate the influence of variation in the per-capita,
daily productivity loss on the spread of the disease. To this end, we simulated the NIC
strategy by setting the unit cost A1 for each new case to either 5 or 1 and the unit cost
A2 to either 5 or 1. The results were shown in Table 9 and Fig. 16. The parameters in
Fig. 16 and Table 9 are the same as in Tables 1 and 3, with the time horizon as in Table
2. If the unit cost of the disease is underestimated, simulations of the NIC strategy
indicate that the optimal strategy entails 2.38% more cases and lives lost, although it
leads to a 78.34% reduction in the total cost.
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